Face Class Modeling based on Local Appearance for Recognition

Mokhtar Taffar, Serge Miguet

Abstract

This work proposes a new formulation of the objects modeling combining geometry and appearance. The object local appearance location is referenced with respect to an invariant which is a geometric landmark. The appearance (shape and texture) is a combination of Harris-Laplace descriptor and local binary pattern (LBP), all is described by the invariant local appearance model (ILAM). We applied the model to describe and learn facial appearances and to recognize them. Given the extracted visual traits from a test image, ILAM model is performed to predict the most similar features to the facial appearance, first, by estimating the highest facial probability, then in terms of LBP Histogram-based measure. Finally, by a geometric computing the invariant allows to locate appearance in the image. We evaluate the model by testing it on different images databases. The experiments show that the model results in high accuracy of detection and provides an acceptable tolerance to the appearance variability.

References

  1. Agarwal, S., Awan, A., and Roth, D. (2004). Learning to detect objects in images via a sparse, part-based representation. In PAMI, 26(11), pp. 1475-1490.
  2. Ahonen, T., Hadid, A., and Pietikinen, M. (2004). Face recognition with local binary patterns. In Proc. of the 8th ECCV Conference.
  3. AT&T-Database (1994). At&t: The database of faces. In Cambridge University, http://www.cl.cam.ac.uk/.
  4. Bart, E., Byvatov, E., and Ullman, S. (2004). View-invariant recognition using corresponding object fragments. In ECCV, pp 152-165.
  5. CMU-Database (2009). Cmu face group and face detection project, frontal and profile face images databases. In http://vasc.ri.cmu.edu/idb/html/face/.
  6. Déniz, O., Bueno, G., Salido, J., and la Torre, F. D. (2011). Face recognition using histograms of oriented gradients. In Pattern Recognition Letters, vol.32, pp:1598- 1603.
  7. Etemad, K. and Chellappa, R. (1997). Discriminant analysis for recognition of human face images. In Journal of the Optical Society of America, vol.14, pp:1724-1733.
  8. Fei-Fe, L., Fergus, R., and Perona, P. (2003). A bayesian approach to unsupervised one-shot learning of object categories. In ICCV, Nice, France, pp. 1134-1141.
  9. FERET-Database (2009). Color feret face database. In www.itl.nist.gov/iad/humanid/colorferet.
  10. Fergus, R., Perona, P., and Zisserman, A. (2003). Object class recognition by unsupervised scale-invariant learning. In CVPR, Madison, Wisconsin, pp. 264-271.
  11. Hadid, A. and Pietikinen, M. (2004). Selecting models from videos for appearance-based face recognition. In Proc. of the 17th International Conference on Pattern Recognition (ICPR).
  12. Hadid, A., Pietikinen, M., and Ahonen, T. (2004). A discriminative feature space for detecting and recognizing faces. In CVPR Proceedings, Vol. 2, pp. 797-804.
  13. Heisele, B., Poggio, T., and Pontil, M. (2000). Face detection in still gray images. In Technical Report 1687, Center for Biological and Computational Learning, MIT.
  14. Kadir, T. and Brady, M. (2001). Saliency, scale and image description. In IJCV, 45(2), pp. 83-105.
  15. Lindeberg, T. (1998). Feature detection with automatic scale selection. In International Journal of Computer Vision, vol. 30(2), pp. 79-116.
  16. Liu, C. (2003). A bayesian discriminating features method for face detection. In IEEE Trans. on PAMI, vol. 25, pp:725-740.
  17. Lowe, D. (2004). Distinctive image features from scaleinvariant keypoints. In IJCV, 60(2), pp. 91-110.
  18. Mikolajczyk, K. and Schmid, C. (2004). Scale and affine invariant interest point detectors. In IJCV, 60(1), pp. 63- 86.
  19. Nanni, L., Brahnam, S., and Lumini, A. (2012). Random interest regions for object recognition based on texture descriptors and bag of features. In Expert Systems with Applications, Elsevier Journal, vol.39, pp:973-977.
  20. Ojala, T., Pietikinen, M., and Menp, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. In IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol.24, pp:971-987.
  21. Penev, P. and Atick, J. (1996). Local feature analysis: a general statistical theory for object representation. In Network: Computation in Neural Systems, vol.7, pp:477- 500.
  22. Phillips, P., Moon, H., Rizvi, S. A., and Rauss, P. J. (2000). The feret evaluation methodology for face recognition algorithms. In IEEE Trans. on PAMI, vol.22, pp:1090- 1104.
  23. PIE-Database (2009). Cmu pose, illumination, and expression (pie) database. In http:/www.ri.cmu.edu/ projects/project 418.html.
  24. Pope, A. and Lowe, D. (2000). Probabilistic models of appearance for 3-d object recognition. In IJCV, 40(2), pp. 149-167.
  25. Schneiderman, H. and Kanade, T. (1998). Probabilistic modeling of local appearance and spatial relationships for object recognition. In CVPR Proceedings, pages 45-51.
  26. Taffar, M. and Benmohammed, M. (2011). Generic face invariant model for face detection. In Proc. IP&C Conference Springer, pp 39-45.
  27. Taffar, M., Miguet, S., and Benmohammed, M. (2012). Viewpoint invariant face detection. In Networked Digital Technologies, Communications in Computer and Information Science, Springer Verlag, pp:390-402.
  28. Toews, M. and Arbel, T. (2006). Detection over viewpoint via the object class invariant. In Proc. Int'l Conf. Pattern Recognition, vol. 1, pp. 765-768.
  29. Turk, M. and Pentland, A. (1991). Eigenfaces for recognition. In Journal of Cognitive Neuroscience, vol. 3, pp:71-86.
  30. Vapnik, V. (1998). Statistical learning theory. In Wiley Edition, New York.
  31. Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Proc. Computer Vision and Pattern Recognition (CVPR), pages 511-518. Springer.
  32. Wiskott, L., Fellous, J.-M., Kuiger, N., and der Malsburg, C. V. (1997). Face recognition by elastic bunch graph matching. In IEEE Transactions on PAMI, vol.19, pp:775-779.
  33. Yang, M.-H., Kriegman, D. J., and Ahuja, N. (2002). Detecting faces in images: A survey. In IEEE Trans. on PAMI, vol.24, pp:34-58.
  34. Yu, J., Qin, Z., Wan, T., and Zhang, X. (2013). Feature integration analysis of bag-of-features model for image retrieval. In Neurocomputing, vol.120, pp:355-364.
Download


Paper Citation


in Harvard Style

Taffar M. and Miguet S. (2017). Face Class Modeling based on Local Appearance for Recognition . In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-222-6, pages 128-137. DOI: 10.5220/0006185201280137


in Bibtex Style

@conference{icpram17,
author={Mokhtar Taffar and Serge Miguet},
title={Face Class Modeling based on Local Appearance for Recognition},
booktitle={Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2017},
pages={128-137},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006185201280137},
isbn={978-989-758-222-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Face Class Modeling based on Local Appearance for Recognition
SN - 978-989-758-222-6
AU - Taffar M.
AU - Miguet S.
PY - 2017
SP - 128
EP - 137
DO - 10.5220/0006185201280137