Visual Interactive Creation of Geo-located Networks

Felix Brodkorb, Manuel Kopp, Arjan Kuijper, Tatiana von Landesberger


Nodes in real world networks often have a geographic position. In many cases such as for simulation or optimization, there is a need for non-trivial synthetic geo-located networks. As synthetic datasets are required to have specific properties such as connectivity and geographic distribution, often networks need to be generated. However, their creation is cumbersome if done purely by hand, and inflexible if done fully automated. Here, we present a framework for creating artificial geographic located networks in a visually interactive way. We designed our framework with the what-you-see-is-what-you-get principle in mind, i.e. showing the (intermediate) results of the interactive creation process at any time and allowing the user to adjust the network iteratively. This design allows our system to be also used as a simple viewer for networks that have incomplete location information. Our approach consists of two steps: (1) Creating the network topology and (2) assigning locations to its nodes. Our half automatic system enables the user to easily set the location of the nodes to predefined areas like countries, states, and urban regions, while still being able to flexibly and interactively control the creation process. We show the utility of our system by creating a real-world-like geo-located network.


  1. Albuquerque, G., Lowe, T., and Magnor, M. (2011). Synthetic generation of high-dimensional datasets. IEEE transactions on visualization and computer graphics, 17(12):2317-2324.
  2. Alvarez-Garcia, S., Baeza-Yates, R., Brisaboa, N. R., Larriba-Pey, J., and Pedreira, O. (2012). Graphgen: A tool for automatic generation of multipartite graphs from arbitrary data. In Web Congress (LA-WEB), 2012 Eighth Latin American, pages 87-94. IEEE.
  3. Ílvarez-García, S., Baeza-Yates, R., Brisaboa, N. R., Larriba-Pey, J.-L., and Pedreira, O. (2014). Automatic multi-partite graph generation from arbitrary data. Journal of Systems and Software, 94:72-86.
  4. Andrienko, G. and Andrienko, N. (2007). Coordinated multiple views: a critical view. In Coordinated and Multiple Views in Exploratory Visualization, 2007. CMV'07. Fifth International Conference on, pages 72-74. IEEE.
  5. Bach, B., Spritzer, A., Lutton, E., and Fekete, J.-D. (2013). Interactive random graph generation with evolutionary algorithms. In Graph Drawing, pages 541-552. Springer.
  6. Baeza-Yates, R., Brisaboa, N., and Larriba-Pey, J. (2010). A model for automatic generation of multi-partite graphs from arbitrary data. In Web-Age Information Management, pages 49-60. Springer.
  7. Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. science, 286(5439):509-512.
  8. Baudel, T. (2006). From information visualization to direct manipulation: Extending a generic visualization framework for the interactive editing of large datasets. In Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology, UIST 7806, pages 67-76, New York, NY, USA. ACM.
  9. Benson, D. (2015). Draw.
  10. Bremm, S., von Landesberger, T., Heß, M., and Fellner, D. (2012). Pcdc-on the highway to data-a tool for the fast generation of large synthetic data sets. In EuroVis Workshop on Visual Analytics, pages 7-11.
  11. Brinkhoff, T. (2002). A framework for generating networkbased moving objects. GeoInformatica, 6(2):153- 180.
  12. Brinkmann, G. and McKay, B. D. (2007). Fast generation of planar graphs. MATCH Commun. Math. Comput. Chem, 58(2):323-357.
  13. Brodkorb, F., Kopp, M., Kuijper, A., and von Landesberger, T. (2016). A modular rule-based visual interactive creation of tree-shaped geo-located networks. In 2016 12th International Conference on Signal-image Technology & Internet-based Systems (sitis), pages 397- 403. IEEE Computer Society Press.
  14. Cascetta, E. and Cantarella, G. E. (1993). Modelling dynamics in transportation networks: state of the art and future developments. Simulation practice and theory, 1(2):65-91.
  15. Chen, G., Esch, G., Wonka, P., Müller, P., and Zhang, E. (2008). Interactive procedural street modeling. In ACM transactions on graphics (TOG), volume 27, page 103. ACM.
  16. Díaz, J., Petit, J., and Serna, M. (2002). A survey of graph layout problems. ACM Comput. Surv., 34(3):313-356.
  17. Eades, P. (1984). A heuristics for graph drawing. Congressus numerantium, 42:146-160.
  18. Eppstein, D. and Wang, J. (2002). A steady state model for graph power laws. arXiv preprint cs/0204001.
  19. Erdös, P. and Rényi, A. (1959). On random graphs, i. Publicationes Mathematicae (Debrecen), 6:290-297.
  20. Frick, R. (2011). Simulation of transportation networks. In Proceedings of the 2011 Summer Computer Simulation Conference, pages 188-193. Society for Modeling & Simulation International.
  21. Gladisch, S., Schumann, H., Ernst, M., Füllen, G., and Tominski, C. (2014). Semi-automatic editing of graphs with customized layouts. In Computer Graphics Forum, volume 33, pages 381-390. Wiley Online Library.
  22. Griffith, D. A. (2002). A spatial filtering specification for the auto-poisson model. Statistics & probability letters, 58(3):245-251.
  23. Herman, I., Melancon, G., and Marshall, M. S. (2000). Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics, 6(1):24-43.
  24. Kleinberg, J. M. (2000). Navigation in a small world. Nature, 406(6798):845-845.
  25. Maciejewski, R., Hafen, R., Rudolph, S., Tebbetts, G., Cleveland, W. S., Grannis, S. J., and Ebert, D. S. (2009). Generating synthetic syndromic-surveillance data for evaluating visual-analytics techniques. IEEE Computer Graphics and Applications, 29(3):18-28.
  26. McGuffin, M. J. and Jurisica, I. (2009). Interaction techniques for selecting and manipulating subgraphs in network visualizations. IEEE Transactions on Visualization and Computer Graphics, 15(6):937-944.
  27. National Council of Teachers of Mathematics (2015). Illuminations.
  28. Okabe, A., Okunuki, K.-i., and Shiode, S. (2006a). Sanet: a toolbox for spatial analysis on a network. Geographical Analysis, 38(1):57-66.
  29. Okabe, A., Okunuki, K.-I., and Shiode, S. (2006b). The sanet toolbox: new methods for network spatial analysis. Transactions in GIS, 10(4):535-550.
  30. O'Madadhain, J., Fisher, D., White, S., and Boey, Y. (2003). The jung (java universal network/graph) framework. University of California, Irvine, California.
  31. Parish, Y. I. and Müller, P. (2001). Procedural modeling of cities. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 301-308. ACM.
  32. Sakshaug, J. W. and Raghunathan, T. E. (2010). Synthetic data for small area estimation. In Privacy in Statistical Databases, pages 162-173. Springer.
  33. Sakshaug, J. W. and Raghunathan, T. E. (2014a). Generating synthetic data to produce public-use microdata for small geographic areas based on complex sample survey data with application to the national health interview survey. Journal of Applied Statistics, 41(10):2103-2122.
  34. Sakshaug, J. W. and Raghunathan, T. E. (2014b). Nonparametric generation of synthetic data for small geographic areas. In Privacy in Statistical Databases, pages 213-231. Springer.
  35. Spritzer, A. S. and Freitas, C. M. (2008). A physics-based approach for interactive manipulation of graph visualizations. In Proceedings of the working conference on Advanced visual interfaces, pages 271-278. ACM.
  36. Theodoridis, Y., Silva, J. R., and Nascimento, M. A. (1999). On the generation of spatiotemporal datasets. In Advances in Spatial Databases, pages 147-164. Springer.
  37. von Landesberger, T., Bremm, S., Bernard, J., and Schreck, T. (2010). Smart query definition for contentbased search in large sets of graphs. In EuroVAST 2010, pages 7-12. European Association for Computer Graphics (Eurographics), Eurographics Association, Goslar.
  38. von Landesberger, T., Bremm, S., Kirschner, M., Wesarg, S., and Kuijper, A. (2013). Visual analytics for modelbased medical image segmentation: Opportunities and challenges. Expert Syst. Appl., 40(12):4934-4943.
  39. von Landesberger, T., Görner, M., Rehner, R., and Schreck, T. (2009). A system for interactive visual analysis of large graphs using motifs in graph editing and aggregation. In Vision Modeling Visualization Workshop, pages 331-339. DNB.
  40. von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J. J., Fekete, J.-D., and Fellner, D. W. (2011). Visual analysis of large graphs: Stateof-the-art and future challenges. Computer Graphics Forum, pages 1719-1749.
  41. Wang, B., Ruchikachorn, P., and Mueller, K. (2013). Sketchpadn-d: Wydiwyg sculpting and editing in high-dimensional space. Visualization and Computer Graphics, IEEE Transactions on, 19(12):2060-2069.
  42. Whiting, M. A., Haack, J., and Varley, C. (2008). Creating realistic, scenario-based synthetic data for test and evaluation of information analytics software. In Proceedings of the 2008 Workshop on BEyond time and errors: novel evaLuation methods for Information Visualization, page 8. ACM.
  43. Wong, P., Foote, H., Mackey, P., Perrine, K., and Chin, G. (2006). Generating graphs for visual analytics through interactive sketching. IEEE Transactions on Visualization and Computer Graphics, 12(6):1386-1398.
  44. Ying, X. and Wu, X. (2009). Graph generation with prescribed feature constraints. In SDM, volume 9, pages 966-977. SIAM.
  45. YWorks (2015). Yed graph editor. en/products/yfiles/yed/.

Paper Citation

in Harvard Style

Brodkorb F., Kopp M., Kuijper A. and von Landesberger T. (2017). Visual Interactive Creation of Geo-located Networks . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017) ISBN 978-989-758-228-8, pages 283-293. DOI: 10.5220/0006176302830293

in Bibtex Style

author={Felix Brodkorb and Manuel Kopp and Arjan Kuijper and Tatiana von Landesberger},
title={Visual Interactive Creation of Geo-located Networks},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017)},

in EndNote Style

JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017)
TI - Visual Interactive Creation of Geo-located Networks
SN - 978-989-758-228-8
AU - Brodkorb F.
AU - Kopp M.
AU - Kuijper A.
AU - von Landesberger T.
PY - 2017
SP - 283
EP - 293
DO - 10.5220/0006176302830293