Automatic Separation of Basal Cell Carcinoma from Benign Lesions in Dermoscopy Images with Border Thresholding Techniques

Nabin K. Mishra, Ravneet Kaur, Reda Kasmi, Serkan Kefel, Pelin Guvenc, Justin G. Cole, Jason R. Hagerty, Hemanth Y. Aradhyula, Robert LeAnder, R. Joe Stanley, Randy H. Moss, William V. Stoecker

Abstract

Basal cell carcinoma (BCC), with an incidence in the US exceeding 2.7 million cases/year, exacts a significant toll in morbidity and financial costs. Earlier BCC detection via automatic analysis of dermoscopy images could reduce the need for advanced surgery. In this paper, automatic diagnostic algorithms are applied to images segmented by five thresholding segmentation routines. Experimental results for five new thresholding routines are compared to expert-determined borders. Logistic regression analysis shows that thresholding segmentation techniques yield diagnostic accuracy that is comparable to that obtained with manual borders. The experimental results obtained with algorithms applied to automatically segmented lesions demonstrate significant potential for the new machine vision techniques.

References

  1. Aberg, P. et al., 2004, Skin cancer identification using multifrequency electrical impedance--a potential screening tool, IEEE Trans Biomed Eng, 51(12), pp.2097-2102.
  2. Abu-Mostafa, Y.S., Magdon-Ismail, M., Lin, H.T., 2012, Learning from Data, Vol 4, AML Book, Signapore.
  3. Ahlgrimm-Siess, V. et al., 2009, Reflectance confocal microscopy in the daily practice, Semin Cutan Med Surg, 28(3), pp.180-189.
  4. Argenziano, G. et al., 1998, Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis, Arch Dermatol, 134(12), pp.1563-1570.
  5. Argenziano, G. et al., 2003, Dermoscopy of pigmented skin lesions: results of a consensus meeting via the Internet, J Amer Acad Dermatol, 48(5), pp.679-693.
  6. Avanaki, M.R. et al., 2013, Investigation of basal cell carcinoma using dynamic focus optical coherence tomography, Appl Opt, 52(10), pp.2116-2124.
  7. Beetner, D.G. et al., 2003, Differentiation among basal cell carcinoma, benign lesions, and normal skin using electric impedance, IEEE Trans Biomed Eng, 50(8), pp.1020-1025.
  8. Braun, R.P. et al., 2007, The significance of multiple bluegrey dots (granularity) for the dermoscopic diagnosis of melanoma, Br J Dermatol, 157(5), pp.907-913.
  9. Castro, R.P. et al., 2015, Accuracy of in vivo confocal microscopy for diagnosis of basal cell carcinoma: a comparative study between handheld and wide-probe confocal imaging, J Eur Acad Dermatol Venereol, 29(6), pp.1164-1169.
  10. Celebi, M.E., Schaefer, G., Iyatomi, H., Stoecker, W.V., 2009, Lesion Border Detection in Dermoscopy Images, Comput Med Imaging Graph, 33(2), pp. 148- 153.
  11. Celebi, M.E., Wen, Q., Iyatomi, H., Shimizu, K., Zhou, H., Schaefer, G., 2015, A state-of-the-art survey on lesion border detection in dermoscopy images. Dermoscopy Image Analysis, M. E. Celebi, T. Mendonca and J. S. Marques, Eds., Boca Raton, CRC Press, pp. 97-129.
  12. Codella, N.C., Gutman, D., Dusza, S., Marchetti, M., Marghoob, A., Helba, B., Mishra, N., Kalloo, A., Halpern A., 2016, Skin Lesion Analysis toward Melanoma Detection, Proceedings of the Society for Melanoma Research (SMR).
  13. Cheng, B. et al., 2011, Automatic detection of basal cell carcinoma using telangiectasia analysis in dermoscopy skin lesion images, Skin Res Technol, 17(3), pp.278- 287.
  14. Cheng, B. et al., 2012, Automatic telangiectasia analysis in dermoscopy images using adaptive critic design, Skin Res Technol, 18(4), pp.389-396.
  15. Cheng, B. et al., 2013, Automatic dirt trail analysis in dermoscopy images, Skin Res Technol, 19(1), pp.e20- 26.
  16. Dua, R. et al., 2004, Detection of basal cell carcinoma using electrical impedance and neural networks, IEEE Trans Biomed Eng, 51(1), pp.66-71.
  17. Duan, L. et al., 2014, Automated identification of basal cell carcinoma by polarization-sensitive optical coherence tomography, Biomed Opt Express, 5(10), pp.3717-3729.
  18. Eberhardt, C. et al., 2004, Early detection of skin cancer (EDISCIM) through the use of non-invasive confocal imaging, Stud Health Technol Inform, 103, pp.279- 286.
  19. Gambichler, T., Moussa, G., Altmeyer, P., 2008, A pilot study of fluorescence diagnosis of basal cell using a digital flash light-based imaging system, Photo dermatol Photoimmunol Photomed, 24(2), pp.67-71.
  20. Gutman, D., Codella, N.C.F., Celebi, E., Helba, B., Marchetti, M., Mishra, N., Halpern, A., 2016, Skin Lesion Analysis toward Melanoma Detection: A Challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC), arXiv preprint arXiv:1605.01397.
  21. Guvenc, P. et al., 2013, Sector expansion and elliptical modeling of blue-gray ovoids for basal cell carcinoma discrimination in dermoscopy images, Skin Res Technol, 19(1), pp.e532-536.
  22. Hance, G.A., Umbaugh, S.E., Moss, R.H., Stoecker, W.V., 1996, Unsupervised color image segmentation: with application to skin tumor borders, IEEE Eng Med Biol, 15(1), pp. 104-111.
  23. Heckbert, P., 1982, Color image quantization for frame buffer display, SIGGRAPH Proceedings of the 9th annual conference on Computer Graphics and Interactive Techniques, 82, pp.297-307.
  24. Huang, L.K., Huang, M.J., 1995, Image thresholding by minimizing the measures of fuzziness, Pattern Recognition, 28(1), pp.41-51.
  25. Jella, P., 2004, Pigment network extraction and salient point analysis. M.S. Thesis in Electrical Engineering, University of Missouri, Rolla, MO, USA.
  26. Kasmi, R., 2016, Biologically inspired Skin lesion segmentation process, Ph.D. Dept. Elect. Eng., Univ. Bejaia, Bejaia, Algeria.
  27. Kaur, R., LeAnder, R., Mishra, N.K., Hagerty, J.R., Kasmi, R., Stanley, R.J., Celebi, M.E., Stoecker, W.V., 2016, Thresholding methods for lesion segmentation of basal cell carcinoma in dermoscopy images, Skin Research and Technology, 2016, doi: 10.1111/srt.12352 (in press).
  28. Kaushik, V.S.N. et al., 2013, The Median Split Algorithm for Detection of Critical Melanoma Color Features, VISAPP, 1, pp.492-495.
  29. Kefel, S. et al., 2012, Discrimination of basal cell carcinoma from benign lesions based on extraction of ulcer features in polarized-light dermoscopy images, Skin Res Technol, 18(4), pp.471-475.
  30. Kefel, S., Kefel, S.P., LeAnder, R.W., Kaur, R., Kasmi, R., Mishra, N.K., Rader, R.K., Cole, J.G., Woolsey, Z.T., Stoecker, W.V., 2016, Adaptable texture-based segmentation by variance and intensity for automatic detection of semitranslucent and pink blush areas in basal cell carcinoma, Skin Research and Technology, 22(4), pp. 412-422.
  31. Kopriva, I. et al., 2007, Visualization of basal cell carcinoma by fluorescence diagnosis and independent component analysis, Photodiagnosis Photodyn Ther, 4(3), pp.190-196.
  32. Landini, G., 2013, http://fiji.sc/Auto_Threshold#Li v1.15.
  33. Larraona-Puy, M. et al., 2009, Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma, J Biomed Opt, 14(5), 054031.
  34. Li, C.H., Tam, P.K., 1998, An iterative algorithm for minimum cross entropy thresholding, Pattern Recog Lett, 19(8), pp.771-776.
  35. Ly, E. et al., 2009, Differential diagnosis of cutaneous carcinomas by infrared spectral micro-imaging combined with pattern recognition, Analyst, 134(6), pp.1208-1214.
  36. Marghoob, A.A., Malvehy, J., Braun, F.P., 2012, An Atlas of Dermoscopy, 2nd Edition, Boca Raton FL:CRC Press.
  37. Mishra, N., 2014, Automated classification of malignant melanoma based on detection of atypical pigment network in dermoscopy images of skin lesions. Ph.D. Thesis, Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO.
  38. Mishra, N.K., Celebi, M.E., 2016, An overview of melanoma detection in dermoscopy images using image processing and machine learning, arXiv preprint arXiv:1601.07843.
  39. Moss, R.H. et al., 1989, Skin cancer recognition by computer vision, Comput Med Imaging Graph, 13(1), pp.31-36.
  40. Nijssen, A. et al., 2002, Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy, J Invest Dermatol, 119(1), pp.64-69.
  41. Otsu, N., 1979, A threshold selection method from grey level histograms, IEEE Trans Systems, Man, Cybern, 9(1), pp.62-66.
  42. Riddler, T.W., Calvard, S., 1978, Picture thresholding using an iterative selection method, IEEE Trans Systems, Man, Cybern, 8, pp. 630-632.
  43. Rogers, H.W. et al., 2010, Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol, 146(3), pp.283-287.
  44. Rogers, H.W., Coldiron, B.M., 2013, Analysis of skin cancer treatment and costs in the United States Medicare population, 1996-2008, Dermatol Surg, 39(1 Pt 1), pp.35-42.
  45. Sforza, G., Castellano, G., Arika, S.K., Leander, R.W., Stanley, R.J., Stoecker, W.V., Hagerty, J.R., 2012, Using adaptive thresholding and skewness correction to detect gray areas in melanoma in situ images, IEEE Trans Instrum Meas, 61(7), pp. 1839-1847.
  46. Shanbhag, A.G., 1994, Utilization of information measure as a means of image thresholding, CVGIP: Graph Models Image Proc, 56(5), pp.414-419.
  47. Soyer, H.P., Argenziano, G., Hofmann-Wellenhof, R., Johr, R. (eds), 2007, Color Atlas of Melanocytic Lesions of the Skin, Berlin, Germany: Springer Berlin Heidelberg.
  48. Steger, C., 1996, Extracting lines using differential geometry and Gaussian smoothing, Int Arch Photogrammetry Remote Sensing, 31, pp.821-826.
  49. Stoecker, W.V., et al., 2009, Semitranslucency in dermoscopic images of basal cell carcinoma, Arch Dermatol, 145(2), pp.224.
  50. Stoecker, W.V., Mishra, N., LeAnder, R., Rader, R., Stanley, R., 2013, Automatic Detection of Skin Cancer - Current Status, Path for the Future, In: Proceedings of the International Conference on Computer Vision Theory and Applications, pp. 504-508. Available: https://goo.gl/7o5JfY.
  51. Stoecker, W.V., Mishra, N.K., Kaur, R., Kasmi, R., Cole, J.G., Safron, A., Moss, R.H., Leander, B., Stanley, R.J., Rabinovitz, H., Oliviero M., 2015, Automatic Diagnosis of Basal Cell Carcinoma: Fusion of Dermoscopic and Clinical Features, American Academy of Dermatology Symposium, At Nob Hill ABC, Marriott Marquis San Francisco San Francisco, CA, USA.
  52. Stolz, W. et al., 2002, Color Atlas of Dermatoscopy, 2nd Edition, Berlin: Blackwell Science.
  53. Tehrani, H. et al., 2007, Spectrophotometric intracutaneous analysis in the diagnosis of basal cell carcinoma: a pilot study, Int J Dermatol, 46(4), pp.371-375.
  54. Umbaugh, S.E., Moss, R.H., Stoecker, W.V., 1989, Automatic color segmentation of images with application to detection of variegated coloring in skin tumors, Eng Med Biology Magazine IEEE, 8(4), pp.43-50.
  55. Umbaugh, S.E., 2010, Digital Image Processing and Analysis: Human and Computer Vision Applications with CVIPtools, Boca Raton FL, CRC press.
  56. Won, Y. et al., 2007, Photodetection of basal cell carcinoma using methyl 5-aminolaevulinate-induced protoporphyrin IX based on fluorescence image analysis, Clin Exp Dermatol, 32(4), pp.423-429.
  57. Zeichner, J.A., Patel, R.V., Birge, M.B., 2011, Treatment of Basal cell carcinoma with curettage followed by imiquimod 3.75% cream, J Clin Aesthet Dermatol, 4(5), pp.39-43.
  58. Zhang, J. et al., 2000, A feasibility study of multispectral image analysis of skin tumors, Biomed Instrum Technol, 34(4), pp.275-282.
Download


Paper Citation


in Harvard Style

K. Mishra N., Kaur R., Kasmi R., Kefel S., Guvenc P., G. Cole J., R. Hagerty J., Y. Aradhyula H., LeAnder R., Joe Stanley R., H. Moss R. and V. Stoecker W. (2017). Automatic Separation of Basal Cell Carcinoma from Benign Lesions in Dermoscopy Images with Border Thresholding Techniques . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-225-7, pages 115-123. DOI: 10.5220/0006173601150123


in Bibtex Style

@conference{visapp17,
author={Nabin K. Mishra and Ravneet Kaur and Reda Kasmi and Serkan Kefel and Pelin Guvenc and Justin G. Cole and Jason R. Hagerty and Hemanth Y. Aradhyula and Robert LeAnder and R. Joe Stanley and Randy H. Moss and William V. Stoecker},
title={Automatic Separation of Basal Cell Carcinoma from Benign Lesions in Dermoscopy Images with Border Thresholding Techniques},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={115-123},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006173601150123},
isbn={978-989-758-225-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)
TI - Automatic Separation of Basal Cell Carcinoma from Benign Lesions in Dermoscopy Images with Border Thresholding Techniques
SN - 978-989-758-225-7
AU - K. Mishra N.
AU - Kaur R.
AU - Kasmi R.
AU - Kefel S.
AU - Guvenc P.
AU - G. Cole J.
AU - R. Hagerty J.
AU - Y. Aradhyula H.
AU - LeAnder R.
AU - Joe Stanley R.
AU - H. Moss R.
AU - V. Stoecker W.
PY - 2017
SP - 115
EP - 123
DO - 10.5220/0006173601150123