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Abstract: Basal cell carcinoma (BCC), with an incidence in the US exceeding 2.7 million cases/year, exacts a 
significant toll in morbidity and financial costs. Earlier BCC detection via automatic analysis of dermoscopy 
images could reduce the need for advanced surgery. In this paper, automatic diagnostic algorithms are 
applied to images segmented by five thresholding segmentation routines. Experimental results for five new 
thresholding routines are compared to expert-determined borders. Logistic regression analysis shows that 
thresholding segmentation techniques yield diagnostic accuracy that is comparable to that obtained with 
manual borders. The experimental results obtained with algorithms applied to automatically segmented 
lesions demonstrate significant potential for the new machine vision techniques.  

1 INTRODUCTION 

The incidence of basal cell carcinoma (BCC) 
continues to rise worldwide, with incidence in the 
USA of all non-melanoma skin cancer exceeding 3 
million cases, per year (Rogers et al., 2010). 
Morbidity and costs to society associated with 
advanced cases of BCC are significant. Costs of 
treatment for skin cancer more than doubled from 
1998 to 2006 (Rogers and Coldiron, 2013). Newer 
nonsurgical treatment techniques (Zeichner et al., 
2011) applicable to earlier-appearing lesions, could 
be combined with automated diagnostic methods to 
diagnose small lesions and treat them earlier. 
Therefore, automatic diagnosis of early lesions could 
provide significant societal benefits. 

Automated pre-biopsy diagnosis of BCC was 
first attempted in the 1980s, using clinical images 
(Moss et al., 1989). The advent of dermoscopy, 
provided superior images containing far more detail 
and created a proliferation of the signs that identify 
melanoma and non-melanoma skin cancer 
(Argenziano et al., 2003; Stolz et al., 2002; Soyer et 

al., 2007, Marghoob et al., 2012). A number of 
studies appeared using image analytic techniques to 
detect melanoma in dermoscopy images. Relatively 
few studies used image analytic techniques to 
identify structures in BCC, including ulcers, 
semitranslucency, telangiectasia, and pigmented 
structures (Kefel et al., 2012; Guvenc et al., 2013; 
Cheng et al., 2011; Cheng et al., 2012; Cheng et al., 
2013). 

Pre-biopsy diagnosis of BCC has also been 
attempted using multiple alternative approaches, that 
incorporate various novel technologies for acquiring 
images, including confocal microscopy (Castro et 
al., 2015; Ahlgrimm-Siess et al., 2009; Eberhardt et 
al., 2004), optical coherence tomography (OCT) 
(Duan et al., 2014; Avanaki et al., 2013; Castro et 
al., 2015), multispectral imaging (Zhang et al., 2000; 
Tehrani et al., 2007; Ly et al., 2009), chemical 
application and photodynamic methods (Won et al., 
2007; Kopriva et al., 2007; Gambichler et al., 2008). 
Studies applying non-imaging techniques have 
utilized impedance (Beetner et al., 2003; Dua et al., 
2004; Aberg et al., 2004) and Raman spectroscopy 
(Larraona-Puy et al., 2009; Nijssen et al., 2002). 
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However, all of these alternative approaches have 
disadvantages, including more expensive equipment, 
slower acquisition time, and in some cases, a steep 
learning curve before properly operating the 
equipment and interpreting results. Dermoscopy 
images are acquired quickly. Some approaches 
require a probe that cannot be used on the earliest-
appearing BCCs which are as small as 1mm in 
diameter. Many clinics already have the apparatus 
needed for dermoscopy. So, digital dermoscopy 
analysis performed on common, conventional, gel-
contact, non-polarized images have advantages over 
alternate methods in diagnosing BCC. The purpose 
of this study was to determine the feasibility of 
automatic differentiating BCC from benign lesions 
by combining image analytic techniques applied to 
dermoscopy images with patient information and 
general image information.  

2 METHODS 

2.1 Experimental Data Sets  

This study analyzed 1023 digital, 1024x768-pixel, 
gel-contact, non-polarized, dermoscopy images of 
lesions acquired during the National Institutes of 
Health-funded study SBIR R44 CA-101639-02A2 
2007-2009. This set of images included 305 BCC 
lesions of which 26 (8.5%) were infiltrative, 28 
(9.2%) were superficial, and 1 (0.33%) was 
metatypical, or baso-squamous. BCC size, measured 
at the greatest diameter, ranged 1-45mm, with 
median size = 6mm. Of these lesions, 47/305 
(15.4%) were ≤ 3mm. There were 176 (57.7%) on 
heads and necks, 43 (14.1%) on upper limbs, 24 
(7.9%) on lower limbs, and 62 (20.3%) on patients’ 
trunks. Only 88 (28.9%) of patients had concern 
about the lesions; and 111 (36.4%) of patients noted 
a change in their lesion. Also, included in this set 
were 718 benign images of which 290 (40.4%) were 
nevi, 89 (12.4%) were dysplastic nevi, 5 (0.7%) 
were sebaceous hyperplasia, and 124 (17.3%) were 
seborrheic keratoses, with the remainder having 
various benign diagnoses.  

Lesion images were acquired at four clinics in 
Plantation FL, Rolla MO, Columbia MO and 
Stamford CT. The Phelps County Regional Medical 
Center Institutional Review Board (Rolla, Missouri) 
approved this research. Only two of the BCCs were 
not biopsied and examined by a dermatopathologist; 
these were diagnosed using confocal microscopy. 
All benign lesions were either biopsied, or serially-
examined and determined to have no change.  

2.2 Overall Approach 

Our general approach was to apply digital image 
analysis techniques previously used in melanoma 
detection (Jella, 2004; Mishra, 2014; Mishra et al., 
2016; Gutman et al., 2016; Codella et al., 2016; 
Kaushik et al., 2013; Stoecker et al., 2013; Stoecker 
et. al., 2015) to find dermoscopy features in images 
of BCC. To these features, two features specific to 
BCC were added: vascular blush / semitranslucency 
(Kefel et al., 2016) and vessels / telangiectasia 
(Cheng et al., 2011). The overall approach is shown 
in Figure 1.  

 

Figure 1: Overall system for BCC classifier. The seven 
image analyser modules are reduced to five modules at the 
classifier stage by logistic regression. The patient 
information module provides a sixth final module. 

The final result is acquired with logistic 
regression using a leave-one-out cross validation 
technique.  
The logistic regression function is defined by 
equation 1.  

φሺzሻ= 1

1+e-z   where  z=WTX (1)

where X is a matrix with dimension d and W 
contains the weights for X. The desired hypothesis 
can be achieved by minimizing the equation 2 using 
iterative gradient approach (Abu-Mostafa et al., 
2012).  

Ein= 
1

N
෍ log(1+e-ynWTXn)

N

n=1

 (2)

where N is the No. of samples, yi will be either one 
or zero for positive and negative set respectively.  
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2.3 Border Generating Methods 

This research applied six different lesion border 
segmentation algorithms based on five different 
thresholding algorithms (Kaur et al., 2016). The pre- 
and post-processing for these algorithms is shown in 
Figure 2. The first thresholding method, based on 
work by Huang and Huang, minimizes the fuzziness 
measure of a dermoscopy skin lesion image 
(Landini, 2013; Huang and Huang, 1995) (Huang, 
Figure 2). 

The next skin lesion segmentation algorithm 
based on work by Li and Tam, was based on 
minimum, cross-entropy thresholding, where 
threshold selection was done by minimizing the 
cross entropy between the dermoscopy image and its 
segmented version (Landini, 2013; Li and Tam, 
1998) (Li, Figure 2). 

Finally, an effective image information measure 
was obtained by modifying an image entropy-
measure-based thresholding method; this helped 
obtain two more lesion borders using the assistance 
of different pre-processing and post-processing 
methods (Landini, 2013; Shanbhag, 1994) 
(Shanbhag-1 and -2, Figure 2).  

 

Figure 2: Flowchart for Huang, Li and Shanbhag 
algorithms. Isodata and Otsu methods follow Shanbhag-2. 

Kaur et al. also discussed that Otsu (Otsu, 1979) and 
Isodata (Riddler and Calvard, 1978) methods 
produced borders similar to Huang, Li and Shanbhag 
borders. From the four algorithms in Figure 2, 
Shanbhag-2 pre- and post-processing provided the 
best results for Otsu and Isodata thresholding 

methods. 
Hair removal is a crucial pre-processing step 

used in all the algorithms. The hair removal 
technique (Kasmi, 2016) was developed by 
converting an image to grayscale and then scanned 
by a horizontal array of 1x7 pixels; if the difference 
between the smallest and the largest pixel values 
was more than 15, then the smallest pixel indicated 
the presence of hair. On the identified hair segment, 
three horizontally-oriented parallel masks were 
centered and replaced by the average of the two 
adjacent masks. This process is followed by the 
same procedure using a vertical array. The final 
mask is subtracted from the grayscale image 
following a binary thresholding to produce the hair 
mask. This mask undergoes multiple morphological 
operations and the linear interpolation inpainted 
technique is applied to remove the unwanted hairs 
(Kasmi, 2016). An example of hair removal can be 
seen in Figure 3.  

Figure 3: Example for hair removal. (a) Image with hairs, 
(b) Image after hair removal. 

The two utilities above, hair removal and image 
segmentation to determine the border, were applied 
to each image prior to processing for the following 
lesion structures.  

2.4 General Lesion Network Structure  

2.4.1 Atypical Pigment Network Detection 

Benign melanocytic nevi usually contain a visible 
pigment network that is either fairly symmetric and 
regular, or atypical. A pigment network whose 
network structure varies in size and shape is called 
an “irregular” or “atypical pigment network” (APN).  
Different varieties of irregular wide/or dark APN 
aberrations may be appear as brown, black, gray 
meshes or thick lines in dermoscopy images 
(Argenziano et al., 1998). The variance detection 
method for APN summarized here is described in 
Mishra, 2014). Nearly all APN areas have relatively 
high variance in the relative-red plane, obtained by 
subtracting the average red value of surrounding 
skin from the red values in the RGB image. The 
relative-red plane is divided into 16x16 blocks. 
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Blocks where variance falls above an adaptive 
threshold calculated using the mean and standard 
deviation of variance among all the 16x16 blocks of 
the lesion, are candidates for APN. Because 
granularity (Braun et al., 2007) can mimic APN, a 
green-to-blue ratio threshold was used to remove the 
false positive granular structures that were detected 
as APN. Figure 4 shows (a) an image of a benign 
lesion having an APN and (b) the lesion’s APN 
enhanced with an overlay. Features such as atypical 
area size and asymmetry are used to measure APN. 
The pigment network of the benign melanocytic 
nevus in Figure 4, is reasonably symmetrical and 
was correctly identified as benign. 

 

Figure 4: Benign lesion with APN overly. (a) Original 
image, (b) APN overlay. 

2.4.2 Salient Point Detection 

“Salient points” are those points which are detected 
using Steger’s method of line detection (Steger, 
1996). Dark lines in an image have a low first order 
derivative in the direction of the line, and a high 
second derivative in the orthogonal direction. The 
best results of trials performed in discriminating 
melanoma were obtained by using the intensity 
plane ((R+G+B)/3) to detect salient points (Jella, 
2004). The method is best implemented by first 
smoothing, or blurring the intensity image with a 
Gaussian filter, as a pre-processing step. The choice 
of the filter sigma can significantly affect the 
outcome. 1.02 was experimentally found to be 
sigma’s optimal value (Jella, 2004). After finding 
the salient points, they were used to calculate 
various texture and color features that would help 
detect melanoma. Salient points used that way tend 
to favor sharp edges of dark structures. 

2.5 General Lesion Structure 3: Color 
Segmentation by Median Split 
Technique 

“Median split” is a pixel-clustering method that is 
based on the characteristics of an image’s histogram 

(Heckbert, 1982; Umbaugh et al., 1989; Umbaugh, 
2010; Kaushik et al., 2013). The method was 
originally used in the development of an image 
compression technique (Heckbert, 1982). In this 
present application, after the lesion border was used 
to segment the lesion from the rest of the 
dermoscopy image, the median split algorithm was 
applied to pixels in the area of the lesion. To apply 
the technique, first, all lesion-area pixels are 
considered to be in a single color bin that has R, G 
and B dimensions. The dimension having the largest 
range is then split at the median color, such that the 
two resulting bins have equal numbers of pixels. 
Each iteration first considers the ranges of the colors 
in each bin, and then splits the bin having the largest 
range into two bins having equal pixel populations. 
The bin with the highest range on any color axis is 
chosen for the subsequent split. Within the chosen 
bin, the split is performed along the color axis 
having the highest range. In this study, three 
iterations were performed, resulting in a lesion’s 
segmentation into four color regions. Each region 
was then represented by its average color. Figure 5 
illustrates the results of a median split obtained from 
the original RGB image of a benign nevus. Note that 
the lesion mask was applied to the RGB image, 
before applying the median split algorithm, so that 
only the lesion colors were split. Note also, that the 
symmetry and radial gradient of the colors were 
captured using the median split algorithm. 
 

 

Figure 5: Median split segmentation performed by 
subsequent splitting of the plane with highest range. (a) 
Original dermoscopy image, (b) Histogram, (c) Median 
split image. 

2.6 BCC Structure  

2.6.1 Telangiectasia Detection 

The small blood vessels seen in basal cell 
carcinomas are called telangiectasia (Argenziano et 
al., 2003). An algorithm for telangiectasia detection 
was implemented in (Cheng et al., 2011). In the 
most advanced case, telangiectasia takes the form of 
wider vessels branching into smaller vessels like a 
tree does; consequently, that process is called 
“arborizing” telangiectasia. Non-arborizing 
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telangiectasia are more common and seen in the 
earlier development of BCC. The presence of 
vessels alone is not significant, because wide 
telangiectasia may be seen in any sun-damaged skin 
(Figure 6a, on the upper right). The detection 
technique uses drops at 45-degree directions from a 
pixel. If drop thresholds for a given pixel distance 
are met, then a candidate telangiectasia pixel is 
present (Figure 6b). Because bubble and hair noise 
can interfere with telangiectasia detection, a separate 
hair mask was applied, first. This telangiectasia 
detection method was used to remove the bubble 
noise (Figure 6c) and consequently find the 
telangiectasia in Figure 6d. 

 

Figure 6: (a) Telangiectasia, (b) Cheng drop algorithm, (c) 
Bubble noise (d) Bubble noise removed. 

2.6.2 Semitranslucency Detection 

Smooth areas known as semitranslucencies are 
useful in detecting BCC (Stoecker et al., 2009). 
Distinguishing these areas from other areas depends 
critically on features of color and smoothness 
(Cheng et al., 2011; Cheng et al., 2012). To 
implement automatic detection, smoothness- and 
color-based filtering was employed with the use of 
control limits by (Kefel et al., 2016). Example 
images showing semitranslucency detection in BCC 
are shown in Figure 7. 

 

Figure 7: BCC with detected smooth semitranslucent areas 
found automatically. 

2.7 Final Stage: Demographic-feature 
Data Incorporation 

Data recorded for each patient included age in years, 
gender, lesion size, lesion location (head/neck, 
abdomen, chest, back, upper extremities, lower 
extremities), changes noted in the lesion (yes/no), 
concern about the lesion (yes/no), and patient 
location (2 values, residing within 30 degrees of the 

equator or not). 

3 RESULTS 

3.1 Performance of BCC Diagnostic 
Model with Different Borders 

The logistic regression models for each of the six 
modular components in the final decision model 
were constructed using a leave-one-out cross 
validation technique via the Logit procedure, in the 
SAS software environment (SAS Institute Inc. Cary, 
NC). These models were then combined into a single 
logistic regression model that would separate 305 
BCC from 718 competing, benign lesions. SAS’s 
Logistic regression model applies the leave-one-out 
technique to separate the training set from the test 
set one-by-one, to effect model construction. The 
decision accuracy for the model is the maximum 
obtained over the possible logistic probabilities, 
which range 0-1. Results of the mean decision 
accuracy are shown for the six automatic border 
techniques and manual borders, Figure 8.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Mean diagnostic accuracy vs. border method, 
with errors bars shown. 

The average diagnostic performance obtained using 
the dermatologist expert-determined border is 
slightly exceeded by the diagnostic performance 
using two of the automatic borders methods: Isodata 
and Shanbhag-2.  

3.2 XOR Error for Automatic Borders  

There are significant differences between the 
automatic borders and the manual dermatologist 
borders. The XOR border difference, which counts 
the total pixel error and divides by the total manual 
(dermatologist) border is defined in Equation 3 

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
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(Celebi et al., 2009; Celebi et al., 2015; Hance et al., 
1996).  

XOR Error= 
Area(AM ⊕ MM)

Area(MM)
= 

FP+FN

TP+FN
 (3)

 

where AM = Automatic border mask, MM = Manual 
border mask, and ⊕ symbolizes the logical XOR 
between the two masks. Respectively, FN and FP 
are the lesion and non-lesion pixels falsely detected; 
TP and TN are the lesion and non-lesion pixels 
correctly detected, where “lesion”, indicates the 
manual border (Kaur et al., 2016). The average 
difference between the automatic borders measured 
by XOR error is shown in Figure 9.  

 

Figure 9: Average XOR error for 6 methods. 

This XOR error exceeds four, i.e. quadruple the 
lesion area, in the case of Shanbhag-1 borders. 
Overall all XOR errors for BCC segmentation 
exceed 1.46 for BCCs. This implies that the 
segmentations are quite different. The average XOR 
difference between automatic and manual borders is 
greater than the lesion area. Examples of automatic 
borders are given, Figure 10. 

XOR error under-represents the FN errors and 
over-represents the FP errors, Sforza et al. developed 
the relative XOR error for border inaccuracy 
measure using equation 4. (Sforza et al., 2012, Kaur 
et al., 2016) 

Relative XOR Error =
FN

TP+FN
+

FP

FP+TN
= 

(4)

            			      = ൬1–
TP

TP+FN
൰+ ൬1–

TN

TN+FP
൰ 

where FN/(TP+FN) and FP/(FP+TN) are the FN 
and FP ratios, respectively. FN and FP ratio can also 
be represented as sensitivity and specificity 
respectively by the two fraction terms in the right in 
equation 4. Using the relative XOR error, Kaur et al. 
developed lesion capture ratio using the weights ω 
from the manual grading shown in equation 5. (Kaur 
et al., 2016) 

 
(10a) 

 
(10b) 

 
(10c) 

Figure 10a-c: Examples for BCC lesion mask overlay for 
all five methods: Dashed blue – Isodata, Dashed-dotted 
green – Li, Solid Teal – Otsu, Dotted Red – Shanbhag-1, 
Solid black – Shanbhag-2, and Solid White – manual 
border. The borders vary widely. Note that the automatic 
segmentation routines often include areas outside the 
manual (white) border. 

Weighted XOR Error =  

(5)ሺ1– ωሻ ൬ FN

FN + TP
൰  +ω ൬ FP

FP + TN
൰ 
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4 DISCUSSION 

This research gives results for automatic detection of 
a large group of BCCs and benign lesions. Despite 
significant differences between the manual borders 
and the automatic borders, in yielding the correct 
diagnosis, automatically-generated lesion borders in 
some cases can perform slightly better than manual 
borders.  

This study is the largest known study of 
automatic diagnosis performed on a set of BCCs and 
benign lesions. These lesions, acquired from US 
private practice clinics, were challenging for 
machine vision, as some were as small as 1mm in 
greatest diameter.  

5 CONCLUSIONS 

Sets of dermoscopy images of basal cell carcinoma 
can automatically be separated from images of 
benign lesions with moderate accuracy using the 
leave-one-out training and testing on 1023 lesion 
images and factoring in clinical data. Steps taken 
during this study included automatic construction of 
hair masks, automatic lesion segmentation, and the 
determination of multiple logistic regression 
functions: three for general dermoscopic color and 
structure features, two for specific basal cell 
carcinoma features, and one for demographic 
variables. Experimental results show that the 
automatically-determined borders perform similarly 
and in some cases slightly better than manually-
determined borders. The hierarchical logistic 
regression techniques demonstrated here can 
perform well in separating malignant lesions from 
benign lesions. No single logistic regression 
classifier achieved the level of performance obtained 
when factoring together the results from the 
individual classifiers. This research shows that 
diagnostic success with machine vision does not 
always require accurate expert-determined borders. 
This research highlights the potential that the 
hierarchical, regression-selection process, fused with 
demographic data, can serve as a model for 
effectively diagnosing skin lesions. 
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