Interactive Appearance Manipulation of Fiber-based Materials

Stefan Krumpen, Michael Weinmann, Reinhard Klein

Abstract

Achieving a visually appealing experience for the user interaction with photo-realistic digitized micro-fiber materials is a challenging task. While state-of-the-art high-quality fabric modeling techniques rely on complex micro-geometry representations that are computationally expensive and not well-suited for interactive rendering, previous interactive reflectance models reach a speed-up at the cost of discarding many of the effects of light exchange that significantly contribute to the appearance of fabric materials. In this paper, we present a novel, example-based technique for the interactive manipulation of micro-fiber materials based on bidirectional texture functions (BTFs) that allow considering fine details in the surface reflectance behavior. BTFs of the respective material sample are acquired for varying fiber orientations and combined to a single texture representation that encodes material appearance depending on the view and light conditions as well as the orientations of the fibers. This model can be efficiently evaluated depending on the user input which, as demonstrated by our results, allows a realistic simulation of the interaction with micro-fiber materials in real-time.

References

  1. Ashikmin, M., Premoz?e, S., and Shirley, P. (2000). A microfacet-based BRDF generator. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pages 65-74.
  2. Bonneel, N., van de Panne, M., Paris, S., and Heidrich, W. (2011). Displacement interpolation using lagrangian mass transport. ACM Trans. Graph., 30(6):158:1- 158:12.
  3. Dana, K. J., Nayar, S. K., van Ginneken, B., and Koenderink, J. J. (1997). Reflectance and texture of realworld surfaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 151-157.
  4. Gu, J., Tu, C.-I., Ramamoorthi, R., Belhumeur, P., Matusik, W., and Nayar, S. (2006). Time-varying surface appearance: Acquisition, modeling and rendering. ACM Trans. Graph., 25(3):762-771.
  5. Haindl, M. and Filip, J. (2013). Visual Texture: Accurate Material Appearance Measurement, Representation and Modeling. Advances in Computer Vision and Pattern Recognition. Springer-Verlag New York Incorporated.
  6. Irawan, P. and Marschner, S. (2012). Specular reflection from woven cloth. ACM Trans. Graph., 31(1):11:1- 11:20.
  7. Jakob, W., Arbree, A., Moon, J. T., Bala, K., and Marschner, S. (2010). A radiative transfer framework for rendering materials with anisotropic structure. ACM Trans. Graph., 29(4):53:1-53:13.
  8. Khungurn, P., Schroeder, D., Zhao, S., Bala, K., and Marschner, S. (2015). Matching real fabrics with micro-appearance models. ACM Trans. Graph., 35(1):1:1-1:26.
  9. Langenbucher, T., Merzbach, S., Möller, D., Ochmann, S., Vock, R., Warnecke, W., and Zschippig, M. (2010). Time-varying BTFs. In Central European Seminar on Computer Graphics for Students (CESCG).
  10. Lu, J., Barnes, C., DiVerdi, S., and Finkelstein, A. (2013). Realbrush: Painting with examples of physical media. ACM Trans. Graph., 32(4):117:1-117:12.
  11. Lukác?, M., Fis?er, J., Asente, P., Lu, J., Shechtman, E., and S Ékora, D. (2015). Brushables: Example-based edgeaware directional texture painting. Comput. Graph. Forum, 34(7):257-267.
  12. Müller, G. (2009). Data-Driven Methods for Compression and Editing of Spatially Varying Appearance. Dissertation, Universität Bonn.
  13. Sadeghi, I., Bisker, O., De Deken, J., and Jensen, H. W. (2013). A practical microcylinder appearance model for cloth rendering. ACM Trans. Graph., 32(2):14:1- 14:12.
  14. Sch ödl, A., Szeliski, R., Salesin, D. H., and Essa, I. (2000). Video textures. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 7800, pages 489-498.
  15. Schr öder, K., Klein, R., and Zinke, A. (2011). A volumetric approach to predictive rendering of fabrics. In Proceedings of the Eurographics Conference on Rendering (EGSR), pages 1277-1286.
  16. Schr öder, K., Klein, R., and Zinke, A. (2013). Nonlocal image reconstruction for efficient computation of synthetic bidirectional texture functions. Computer Graphics Forum, 32:61-71.
  17. Schr öder, K., Zhao, S., and Zinke, A. (2012). Recent advances in physically-based appearance modeling of cloth. In SIGGRAPH Asia 2012 Courses, pages 12:1- 12:52.
  18. Schr öder, K., Zinke, A., and Klein, R. (2015). Image-based reverse engineering and visual prototyping of woven cloth. IEEE Transactions on Visualization and Computer Graphics, 21(2):188-200.
  19. Schwartz, C., Ruiters, R., Weinmann, M., and Klein, R. (2013a). Webgl-based streaming and presentation of objects with bidirectional texture functions. J. Comput. Cult. Herit., 6(3):11:1-11:21.
  20. Schwartz, C., Sarlette, R., Weinmann, M., and Klein, R. (2013b). DOME II: A parallelized BTF acquisition system. In Proceedings of the Eurographics Workshop on Material Appearance Modeling, pages 25-31.
  21. Schwartz, C., Sarlette, R., Weinmann, M., Rump, M., and Klein, R. (2014). Design and implementation of practical bidirectional texture function measurement devices focusing on the developments at the University of Bonn. Sensors, 14(5):7753-7819.
  22. Sun, B., Sunkavalli, K., Ramamoorthi, R., Belhumeur, P., and Nayar, S. (2006). Time-varying BRDFs. In Proceedings of the Second Eurographics Conference on Natural Phenomena (NPH), pages 15-23.
  23. Velinov, Z. and Hullin, M. B. (2016). An Interactive Appearance Model for Microscopic Fiber Surfaces. In Hullin, M., Stamminger, M., and Weinkauf, T., editors, Vision, Modeling and Visualization.
  24. Weinmann, M., Langguth, F., Goesele, M., and Klein, R. (2016). Advances in geometry and reflectance acquisition. In Eurographics 2016 Tutorials.
  25. Wu, H., Dorsey, J., and Rushmeier, H. (2011). Physicallybased interactive bi-scale material design. In Proceedings of the 2011 SIGGRAPH Asia Conference, pages 145:1-145:10.
  26. Yuen, W. and Wünsche, B. C. (2011). An evaluation on woven cloth rendering techniques. In Proceedings of the International Image and Vision Computing New Zealand Conference (IVCNZ 2011), pages 7-12.
  27. Zhao, S., Jakob, W., Marschner, S., and Bala, K. (2011). Building volumetric appearance models of fabric using micro CT imaging. ACM Trans. Graph., 30(4):44:1-44:10.
  28. Zhao, S., Luan, F., and Bala, K. (2016). Fitting procedural yarn models for realistic cloth rendering. ACM Trans. Graph., 35(4):51:1-51:11.
Download


Paper Citation


in Harvard Style

Krumpen S., Weinmann M. and Klein R. (2017). Interactive Appearance Manipulation of Fiber-based Materials . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017) ISBN 978-989-758-224-0, pages 266-273. DOI: 10.5220/0006168902660273


in Bibtex Style

@conference{grapp17,
author={Stefan Krumpen and Michael Weinmann and Reinhard Klein},
title={Interactive Appearance Manipulation of Fiber-based Materials},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017)},
year={2017},
pages={266-273},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006168902660273},
isbn={978-989-758-224-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017)
TI - Interactive Appearance Manipulation of Fiber-based Materials
SN - 978-989-758-224-0
AU - Krumpen S.
AU - Weinmann M.
AU - Klein R.
PY - 2017
SP - 266
EP - 273
DO - 10.5220/0006168902660273