Towards Confidentiality-strengthened Personalized Genomic Medicine Embedding Homomorphic Cryptography

Kalpana Singh, Renaud Sirdey, François Artiguenave, David Cohen, Sergiu Carpov

Abstract

In this paper, we analyze and propose a solution for the challenges that come with personalized genomic and, most importantly, of performing queries on sequenced dataset sitting on a cloud server. This work provides scenarios for its application in personalized genomic medicine, and tests homomorphic encryption technique to assist in improving the strength of their privacy at non-prohibitive performance cost. By experimental testing using HElib, we make a first step towards performing practical computation over the relevant portions of the genomic dataset of an individual for a first round of practical diagnosis rules.

References

  1. Ayday, E., Cristofaro, E. D., Hubaux, J., and Tsudik, G. (2013a). The chills and thrills of whole genome sequencing. ISSN: 0018-9162.
  2. Ayday, E., Raisaro, J., and Hubaux, J.-P. (2013b). Personal use of the genomic data: Privacy vs. storage cost. In IEEE GLOBECOM, pages 2723-2729.
  3. Ayday, E., Raisaro, J. L., Hengartner, U., Molyneaux, A., and Hubaux, J. P. (2014). Privacy-preserving processing of raw genomic data. In DPM, pages 133-147.
  4. Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2012). (leveled) Fully homomorphic encryption without bootstrapping. In ITCS 7812, pages 309-325.
  5. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., NayaPlasencia, M., and P. Paillier, R. (2016). Stream ciphers: A practical solution for efficient homomorphicciphertext compression. In FSE 2016, pages 313-333.
  6. Gentry, C., Halevi, S., and Vaikuntanathan, V. (2010). A simple BGN-type cryptosystem from LWE. In EUROCRYPT'2010, pages 506-522.
  7. Halevi, S. (2013). HElib: An implementation of homomorphic encryption. https://github.com/shaih/HElib.
  8. Halevi, S. and Shoup, V. (2013). Design and implementation of a homomorphic encryption library.
  9. Halevi, S. and Shoup, V. (2014). Algorithms in helib. In Cryptology-CRYPTO 2014, pages 554-571.
  10. Jiang, X., Zhao, Y., Wang, X., Malin, B., and et al. (2014). A community assessment of privacy preserving techniques for human genomes. BMC Medical Informatics and Decision Making, 14(1):S1.
  11. Lauter, K., L ópez-Alt, A., and Naehrig, M. (2015). Private computation on encrypted genomic data. Technical report, Progress in Cryptology - LATINCRYPT 2014.
  12. Lepoint, T. and Naehrig, M. (2014). A comparison of the homomorphic encryption schemes FV and YASHE. Cryptology ePrint Archive: Report 2014/062.
  13. Naveed, M., Ayday, E., Clayton, E. W., Fellay, J., Gunter, C. A., and et al. (2015). Privacy in the genomic era. ACM Computing Surveys (CSUR), 48(1):Article No. 6.
  14. Nogoorani, S. D. and Jalili, R. (2016). TIRIAC: A trustdriven risk-aware access control framework for grid environments. Future Generation Computer Systems, 55(C):238-254.
  15. Q.Yaseen, Althebyan, Q., and Jararweh, Y. (2013). PEPside caching: An insider threat port. In IEEE 14th International Conference on IRI, pages 137-144.
  16. Smart, N. P. and Vercauteren, F. (2014). Fully homomorphic simd operations. Designs, Codes and Cryptography, 71(1):57-81.
  17. Zhang, X., Liu, C., Nepal, S., and Chen, J. (2013). An efficient quasi-identifier index based approach for privacy preservation over incremental data sets on cloud. Journal of Computer and System Sciences, 79(5):542- 555.
  18. Zhou, H. and Wornell, G. (2014). Efficient homomorphic encryption on integer vectors and its applications. In IEEE ITA Workshop, pages 1-9.
Download


Paper Citation


in Harvard Style

Singh K., Sirdey R., Artiguenave F., Cohen D. and Carpov S. (2017). Towards Confidentiality-strengthened Personalized Genomic Medicine Embedding Homomorphic Cryptography . In Proceedings of the 3rd International Conference on Information Systems Security and Privacy - Volume 1: ICISSP, ISBN 978-989-758-209-7, pages 325-333. DOI: 10.5220/0006148303250333


in Bibtex Style

@conference{icissp17,
author={Kalpana Singh and Renaud Sirdey and François Artiguenave and David Cohen and Sergiu Carpov},
title={Towards Confidentiality-strengthened Personalized Genomic Medicine Embedding Homomorphic Cryptography},
booktitle={Proceedings of the 3rd International Conference on Information Systems Security and Privacy - Volume 1: ICISSP,},
year={2017},
pages={325-333},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006148303250333},
isbn={978-989-758-209-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Information Systems Security and Privacy - Volume 1: ICISSP,
TI - Towards Confidentiality-strengthened Personalized Genomic Medicine Embedding Homomorphic Cryptography
SN - 978-989-758-209-7
AU - Singh K.
AU - Sirdey R.
AU - Artiguenave F.
AU - Cohen D.
AU - Carpov S.
PY - 2017
SP - 325
EP - 333
DO - 10.5220/0006148303250333