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Abstract: There are a large number of modeling languages based on metamodels, and many of the languages are large 
and complex. In many cases, only part of a metamodel is needed. Hence, it is necessary to automatically 
extract needed part from a metamodel. By deeply analyzing the characteristics such as special relations 
between packages and step-by-step strictly defining mechanism of modeling concepts, this paper presents 
an approach to pruning metamodels like UML as needed. The approach can effectively prune metamodels, 
control the size of pruned metamodels, and make pruned metamodels comply with its initial metamodels. 

1 INTRODUCTION 

With the increase of the scale and complexity of 
software, models become important artifacts in 
software development nowadays. Such models 
usually are built in modeling languages.  

A metamodel is a model of models (OMG, 
2013), i.e. a model that specifies the language for 
building models. In this paper, metamodels are the 
ones like UML. That is, a metamodel describes the 
abstract syntax and the static semantic meaning of a 
modeling language with meta-class diagrams and 
object constraint languages, respectively (OMG, 
2011b; OMG, 2011c; Flatscher, 2002). The abstract 
syntax defines a set of modeling concepts, their 
attributes, relationships between them, and the rules 
for combining these concepts to build partial or 
complete models; the static semantic meaning 
typically specifies queries or invariant conditions 
that must hold when applying a metamodel, e.g. 
UML OCL expressions. 

The core of many modeling languages is a 
metamodel, with a detailed explanation (text 
description in most cases) of the semantics of each 
modeling concept, and such languages are called 
metamodel-based modeling languages. The 
organizations such as International Organization for 
Standardization (ISO) and Object Management 
Group (OMG) have released a large number of 
metamodel-based modeling languages, e.g. OMG 
has released more than 200 such specifications, and 
many of such specifications have more than one 

version, e.g. there are 14 versions of UMLs. With 
the development of society, new metamodels will 
come forth. In addition, many of the metamodels are 
built upon existing metamodels using additional 
techniques such as profiling and package merge, and 
tend to become bigger and bigger (Frédéric et al., 
2013). 

Many metamodel-based modeling languages are 
large in size and complex in structure. For example, 
the number of the pages of the core part of UML 
2.4.1(OMG, 2011a; OMG, 2011b) is more than 
1000, its meta-classes are more than 400, and a 
meta-class may have many properties. Besides, there 
are complex dependency relationships between the 
meta-classes. The Common Warehouse Metamodel 
(CWM) 1.1 is 600 pages long even without its Core 
package. SysML is a profile of UML and nearly 300 
pages long without the part of UML specification. 

The size and complexity of such metamodels 
make it is extremely difficult for language builders 
and tool developers etc. to fully identify the 
dependencies among concepts and to determine 
whether the metamodels capture all required 
dependencies (Frédéric, 2013; Robert, 2007). 
Moreover, in many cases application modelers only 
need to understand and apply parts of metamodels, 
not whole.  

It is difficult for users, such as application 
modelers, transformation rule developers, and 
modeling tool developers, to directly study and 
apply the metamodels of large and complex 
modeling languages. The novices usually first study 
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the basic part of the metamodels, and then others. 
That is, to learn a language, one should follow the 
principle of making gradual and orderly progress.  

With the evolvement of modeling languages 
(such as UML), it is a trend that one defines 
metamodels with more and more multiple 
inheritance and deeper and deeper inheritance 
hierarchy (Brian, 2005). The trend increases the 
difficulty for users to learn and apply the modeling 
languages (Dori, 2002). For technical experts, they 
also often need to extract information on given 
elements of the languages. For example, which 
elements are used to define given elements, and 
which elements are defined by given elements. 
Therefore, it is necessary to extract needed parts 
from the metamodels of the modeling languages. 

Software models are usually built in general-
purpose modeling languages (such as UML), but 
such modeling languages cannot satisfy modeling 
requirements of many fields. Therefore, the 
modeling languages need to be extended. For 
example, OMG has released many UML profiles. 
Moreover, the modeling languages will constantly 
evolve, with the development of business fields and 
software development technologies. The evolution 
means to change (i.e. add, delete, and modify) 
constructs of the modeling languages. Therefore, it 
is necessary to fix the range of influence of an 
expansion and a change by calculating the elements 
whose definitions are related to the extension and 
change (Jiang, 2004). If the work is made manually, 
it is tedious and error prone (Rober et al., 2007). The 
work can be finished by extracting needed parts 
from metamodels. 

Model transformation, which transforms source 
models into target models, is an important way to 
develop applications. Two kinds of models are 
usually built by using metamodels. Actually, only 
parts of such metamodels are usually used. For 
example, in object-oriented development, 
transforming persistent classes and relations between 
them into tables described in CWM only uses part of 
UML’s Classes package and part of CWM’s Record 
package. This means transformation rule developers 
only need to study and apply needed parts. This 
shows that extracting needed parts from metamodels 
avails not only modeling but also model 
transformation. 

As mentioned above, modeling languages and 
transformation languages will constantly evolve. For 
maintaining existing models, it is usually necessary 
to find which modeling elements used to build given 
models are affected by the changed elements of the 
languages and then to modify the models according 

to the modeling elements. The first work can be 
completed by extracting needed parts from 
metamodels according to evolved elements. Similar 
work is for maintaining transformations. 

The quality of metamodels is very important 
since one uses them to build models. Indeed, there 
are defects in many metamodels (Brian, 2005; Ma et 
al., 2013). An approach to assure the quality of 
metamodels is using divide and conquer strategy, i.e. 
extracting needed part around each of the subjects of 
the metamodels and inspecting it. 

The above analysis shows that, for large and 
complex modeling languages, in many cases it is 
necessary to extract needed parts from their 
metamodels, namely pruning metamodels here. 

It is extremely difficult to manually prune such 
metamodels. A solution is automatically pruning 
metamodels with tools, which may be built based on 
the modeling tools that have encoded metamodels, 
for example, Rational Rose and Eclipse UML 2. The 
tools for pruning metamodels must support a 
calculation that can decide which elements are 
necessary. 

The existing approaches for pruning class models 
are not applicable to prune metamodels because 
metamodels have their own characteristics (see 
Section 2). There is some work on pruning a 
metamodel, but such work even has nothing to do 
with the architecture and some of the important 
characteristics of a metamodel. Therefore, it is 
necessary to present a new approach to 
automatically pruning metamodels. 

By deeply analyzing the characteristics of 
metamodels such as the special relations between 
packages and the step-by-step strictly defining 
mechanism of modeling concepts, this paper 
presents an approach to pruning metamodels.  

The structure of the paper is as follows. Taking 
the case of UML 2.4.1, Section 2 presents an 
approach to pruning metamodels; Section 3 
discusses the approach; Section 4 analyzes related 
work. Finally, conclusions are drawn. 

2 CALCULATION METHOD 

In metamodels, meta-classes are defined in 
packages, and some of them are defined step-by-step 
in different packages. For example, meta-class 
Classifier first appears in 
Infrastructure::Core::Abstraction::Classifier, and 
then is further defined in 
Infrastructure::Core::Constructs via an import 
relation. Therefore, we need to input the specified 
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meta-classes and the packages at which the meta-
classes locate when pruning metamodels. They form 
a starting point set for pruning a metamodel. 

Packages are usually applied to control the 
complexity of large metamodels, and thus the size of 
a class diagram in a package is not large and it is 
unnecessary to limit the relation path length between 
meta-classes in a package. However, the dependent 
path length between packages is considerable (for 
example, the maximum dependent path length 
between packages in UML2.4.1 is 7), and thus the 
length may be limited to get a smaller size 
metamodel. For example, one usually learns a 
concept from the near to the distant around it. For a 
given meta-class, if the path length from the package 
including it to the related packages is not specified, 
the default value is the maximum dependent path 
length from the package which it locates at to the 
related packages, here we mark the default value is 
@; if the length is 0, this means that the metamodel 
in the package at which the given meta-class locates 
is only calculated. 

In some cases, it is necessary for users to specify 
which packages, meta-classes, and properties of the 
meta-classes are undesired. For example, business 
process modeling does not need the State Machines 
package and Components package of UML, and 
sometime not modeling elements such as 
ActionInputPin and OutputPin in UML::Activities 
package. 

The desired limit on dependent path length 
between packages, and the undesired packages, 
meta-classes, and properties of the meta-classes are 
the optional parameters for pruning metamodels. 

A metamodel is pruned according to a starting 
point set and optional parameters, see Figure 1. 

 

Figure 1: Overview of the pruning method. 

The following are the steps of pruning a 
metamodel. First, packages at which specified meta-
classes locate are processed in an arbitrary order to 
form a package queue, since our calculation method 
is independent of the order of calculating packages. 
Then each package in the queue is pruned, and the 
packages that relate to each package in the queue are 

added into the queue and recursively calculated. In 
the calculation, it is necessary to record the visited 
packages, relations between the packages, and the 
pruned class diagrams in these packages. Finally, the 
recorded elements are the output of pruning the 
metamodel. 

Pruning an innermost package, which only 
includes class diagrams, means extracting the meta-
classes associated with specified meta-classes. The 
paper calls the pruning algorithm as the pruning 
single package algorithm. 

The following discusses how to calculate the 
associated packages. Some meta-classes in a 
package may depend on meta-classes in other 
packages, that is, the package may import and merge 
other packages. These meta-classes are grouped 
according to each package which they depend on, 
respectively, and the meta-classes in each group are 
taken as input to calculate the related package, 
respectively. The calculating results may still depend 
on the meta-classes in other packages, thus the 
calculation above is continued until the packages 
that do not depend on other packages or whose 
dependent path length is more than the specified 
value. 

For a processed package, if it is calculated again, 
the results of two calculations need to be merged. 
For example, taking package Kernel in UML 
Superstructure as input for pruning the metamodel, 
PrimitiveTypes package is calculated twice 
according to the dependency relations and the two 
calculating results are usually different, thus it is 
necessary to merge the two results. 

For the given meta-classes and packages as 
pruning inputs, we can calculate the elements that 
define them and the elements which they define, 
since metamodels describe how to define 
metaclasses with other ones. We refer the first 
calculation as backward pruning and the second as 
forward pruning.  

We first discuss backward pruning, then explain 
how to do forward pruning based on the backward 
pruning method. 

2.1 Pruning Single Package Algorithm 

A package may include more than one class 
diagram. The paper merges the class diagrams in a 
package into one for the sake of the convenient 
calculation since many object-oriented modeling 
tools can merge class diagrams. 

To backward prune a package, we need to 
consider the following cases: 
(a) For each specified meta-class from input, its 
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parent meta-classes are recorded first, and then 
the parent meta-classes of its parent meta-classes 
are recorded, …, in this way, until the classes 
without any parent meta-class. 

(b) For each recorded meta-class, the meta-classes 
with which it directly associates first are 
recorded, and then the unvisited meta-classes 
with which each of these meta-classes directly 
associates are recorded, …, in this way, until the 
meta-classes without any associated meta-class. 

(c) For each of the recorded meta-classes in (b) that 
have submetaclasses, because it inherits the 
meta-association relations of their parent meta-
classes, its submetaclasses first are recorded, and 
then the submetaclasses of each of the 
submetaclasses are recorded, …, in this way, 
until the meta-classes without any 
submetaclasses. 

The three cases need to be considered together in 
following algorithms, not just sequentially. 

To deal with the cases in the pruning single 
package algorithm, we need three definitions and 
one function. 

Definition 1. A class diagram G is a 2-tuple G:= 
(V, E) where V is a set of meta-classes, and E is a 
set of relations between meta-classes. The relations 
are divided into meta-inheritance, meta-association, 
and meta-combination. 

Definition 2. A package P is a 5-tuple P:=<G, 
Creq, NCreq, NPreq, OCLExps> where Creq is a set 
of the specified meta-classes, NCreq is a set of the 
specified undesired meta-classes, NPreq is a set of 
the specified undesired properties of all meta-
classes, and OCLExps is a set of constraint 
expressions by written in OCL (OMG, 2003). The 
default value of Creq is all meta-classes in P, and the 
default values of NCreq, NPreq, and OCLExps all 
are null. 

Definition 3. If a meta-class x is a submetaclass 
of a meta-class y, or x can navigate to y via a meta-
association or meta-combination, y is an adjacent 
point of x. In the latter case, if y has a submetaclass 
z, z is an adjacent point of x. 

Function 1. OCLRelatingMetaclasses 
(OCLExps,v), for a given class diagram, returns all 
meta-classes except meta-class v in the OCL 
expressions that include v. 

The following is algorithm for pruning a single 
package P. 

 
 
 
 
 

 

Algorithm 1: CalcPackage(P). 

1 Initialization 

FOR EACH v∈P.G.V DO visited[v]:=false; 

ClassSet:=Ø; 

2 Calculate related meta-classes in OCL 
expressions of P 

FOR EACH v∈P.Creq DO  

ClassSet←ClassSet ∪ OCLRelatingMeta-
classes (P.OCLExps, v); 

P.Creq ←P.Creq ∪ClassSet; 

3 Delete the specified undesired meta-classes 

P.Creq ←P.Creq–P.Ncreq;  

4 Recursively prune the metamodel in P, taking 
each needed meta-class as a starting point 

FOR EACH v∈P.Creq DO 

IF visited[v]=false THEN CALL Traversal 
(P, v) 

 

In a meta-class diagram, there are usually meta-
associations and meta-combinations, that may be 
unidirectional or bidirectional. For a bidirectional 
relation, if it has been traversed and marked in a 
direction, Traversal (P, v) does not traverse it from 
another direction since it has been marked. 

Algorithm 2: Traversal(P, v). 

1 Delete the specified undesired properties of 
meta-classes v 

v.Attributes←v.Attributes – P.Npreq; 

2 Mark v , i.e. v is visited. 

Mark(v); 

3 Get the first adjacent point of v in P 

w:=FIRSTTADJ(P.G, v); 

4 Recursively calculate all related meta-classes, 
taking v as a starting point 

WHILE w≠0 DO 

4.1 If w is not visited and is not an undesired 
meta-class, record the relation between v and w, and 
then calculate all related meta-classes taking w as a 
starting point. 

IF visited[w] = false AND NOT w∈P.NCreq 
THEN Mark (<v, w>); Traversal (P, w); 

4.2 get next adjacent point 

w:=NEXTADJ(P.G, w); 
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2.2 Pruning Whole Metamodel 
Algorithm 

We already know that there are 3 kinds of relations 
between packages. Include means that a package is 
included in another package, and the meaning 
reflects in the package path names.  

Though import and merge are different relations 
between packages, they all means that the defining 
meta-classes in a package needs to use meta-classes 
in another package, thus the paper deals with two 
relations as dependency relation for pruning 
metamodels. For a package depended on by a set of 
meta-classes, these meta-classes are the input of 
pruning it. Such packages are added into a package 
queue to wait for calculation. 

Since the definition of a meta-class in a package 
may depend on the meta-classes in other packages, it 
is necessary to calculate these packages if they are 
not undesired packages and their path lengths are not 
more than given maximum dependent path length. 

To deal with the above cases in the pruning 
whole metamodel algorithm, we need one definition 
and six functions. 

Definition 4. A metamodel MM is 2-tuple 
MM:=<V, E> where V is a set of packages, E is a 
set of dependency relations between packages. The 
relations are divided into include, import, and 
merge. 

Function 2. PathLength(p) returns the maximum 
length of dependent paths from package p being 
calculated to a set of specified starting point 
packages, which are input for pruning. 

Function 3. CalcImportingPackages(p) returns all 
package names that are used in the package p. 

Function 4. CalcImportingElements(p, pi) returns 
a set that consists of all meta-classes whose package 
prefix name is pi in package p. 

Function 5. CalcMergingPackages(p) returns the 
names of the packages that are direct and transitively 
merged by p and have the same name meta-classes 
with p. 

Function 6. CalcMergingElements(pi) returns a 
set that consists of all meta-classes whose names are 
in package pi. 

Function 7. Add(Pqueue, (pi, CalcElements(p, 
pi)) adds a package with a set that consists of needed 
meta-classes into a package queue Pqueue. 

The following are the parameters of the pruning 
algorithm for entire metamodels. MM is a source 
metamodel. A package queue Pqueue is formed with 
the packages which the specified meta-classes locate 
at. NPackage is a set that is formed with the 
specified undesired packages. MaxLength is the 

specified maximum dependent path length between 
packages. 
 
 

Algorithm 3: PruningMetamodel(MM, Pqueue, 
NPackage, MaxLength). 

1 Initialize a metamodel 

MMt←MM 

2 Delete undesired packages 

MMt←Delete(MMt, NPackage) 

3 Calculate each package in Pqueue 

FOR EACH p in Pqueue do 

IF PathLength(p) ≦MaxLength THEN 

3.1 Call the pruning single package algorithm 
and mark the pruned package 

CALL CalcPackage (p); Mark(p); 

3.2 If PathLength(p) ≠ MaxLength, calculate 
the dependent packages of P and the related 
meta-classes belonging to each of these 
packages. These packages are added into 
Pqueue, and the relations between the 
packages are marked. 

IF PathLength(p) ≠MaxLength 

3.2.1 For importing packages 

PDep←CalcImportingPackages(p); 

FOR EACH pi in PDep DO 

              pi.Creq=alcImportingElements(p, pi); 

Add(Pqueue, pi); Mark(<p, pi>); 

3.2.2 For merging packages 

PDep←CalcMergingPackages(p); 

FOR EACH pi in PDep DO 

        pi.Creq=CalcMergingElements(p, pi); 

Add(Pqueue, pi); Mark(<p, pi>); 

4 Delete not marked elements 

4.1 Delete not marked packages and the 
relations between them 

FOR EACH p∈MMt.V DO  

IF Unmarked(p) THEN Delete(MMt, p); 

FOR EACH e∈MMt.E DO 

            IF Unmarked(e) THEN Delete(MMt, e); 

4.2 Delete not marked meta-classes and the 
relations between them 

FOR EACH P ∈MMt.V DO 

FOR EACH v∈P.G.V DO 

    IF Unmarked(v) THEN Delete(P.G, v); 

FOR EACH e∈P.G.E DO  

IF Unmarked(e) THEN Delete(P.G, e); 
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The algorithms above are applied to backward 
pruning, i.e. to find which elements are used to 
define given elements. The following discusses 
forward pruning, i.e. to find which elements are 
defined by given elements. 

To forward prune a package, we need to consider 
the following cases: 
(a) For each specified meta-class from input, its 

submetaclasses first are recorded, and then the 
submetaclasses of each of its submetaclasses are 
recorded, …, in this way, until the meta-classes 
without any submetaclass. 

(b) For each recorded meta-class, the meta-classes 
with which it directly associates first are 
recorded, and then the meta-classes with which 
each of these meta-classes directly associates are 
recorded, …, in this way, until the meta-classes 
without any associated meta-class. 

Comparing with the backward pruning, we need to 
redefine adjacent point in the definition 3, and 
change the definitions of functions 3, 4, and 5. 
Except for these, forward pruning algorithms are the 
same as backward pruning algorithms. That is, we 
can use backward pruning algorithms to implement 
forward pruning with these redefined concept and 
functions. 

Definition 3’. If a meta-class x is a parent meta-
class of a metaclass y, or x can navigate to y via a 
meta-association or meta-combination, y is an 
adjacent point of x. 

Function 3’. CalcImportingPackages(p) returns 
the names of all packages that depend on package p. 

Function 4’. CalcImportedElements(p, pi) returns 
a set that consists of all meta-classes whose package 
prefix name is p in package pi. 

Function 5’. CalcMergingPackages(p) returns the 
names of all packages that direct and transitively 
merge package p and have the same name meta-
classes with p. 

3 DISCUSSION 

First, it should be pointed out that the approach can 
be used to prune the other metamodels developed by 
using MOF, though the paper takes the case of UML 
in many places. 

There are several application areas where the 
approach can make its useful contributions: 
a) Gaining needed part of a metamodel for study 
Using backward pruning, users such as modelers and 
transformation rule builders can get and study 
needed part of a metamodel. 

b) Evolving and extending modeling languages 
Even if one attribute of a meta-class (as an extension 
point) in a large metamodel is changed, it is usually 
difficult to manually fix its influence scope. Fixing 
the influence scope of the extension points with our 
forward pruning algorithms is the work of very 
significance for evolving and extending modeling 
languages. 
c) Gaining needed part of a metamodel for model 
transformation 
It is easy to get needed part with our backward 
pruning algorithms. The resulted part includes not 
only package diagrams and meta-class diagrams 
extracted from the metamodel but also the code file 
extracted from the metamodel. The reason is that a 
metamodel built with a metamodeling tool is stored 
in code files that describe the elements of 
metamodels and the relations between the elements, 
not just diagrams (OMG,2011c), and such tool 
supports a bidirectional mapping between the 
diagrams and the code files.  
d) Fixing the range of influence of a change of a 

metamodel and inspecting models 
Taking modeling elements (i.e. concrete 
metaclasses) used to build the existing models and 
transformation rules and the old and new versions of 
a metamodel as input of our backward algorithms, 
respectively, users can fix the range of the influence 
of the change of the metamodel by comparing the 
differences between two pruning results, and further 
inspect the influence on the models according to the 
modeling elements in the range. 
e) Finding and handling defects 
Using the divide-and-conquer strategy, we can 
extract part of a metamodel around a subject with 
the approach, and then find and handle defects, even 
measure the quality of the part. 

The following discussions focus on other aspects 
of the approach. 
a) Feasibility 
Modularity, layering, partitioning, extensibility, and 
reuse are five design principles of metamodels 
(OMG,2011b). Such principles ensure that the built 
metamodels are well structured and their 
components such metaclasses and packages all have 
independence. This provides a foundation for 
pruning metamodels with good effects. 
b) Flexibility 
The approach not only can bidirectionally (i.e. 
forward and backward) prune metamodels, and but 
also has a good scalability for controlling size of 
pruned metamodels. To do this, users can specify the 
desired and undesired packages, meta-classes, 
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properties of the meta-classes, and a dependent path 
length between packages. 
c) Precision and Recall 
Since a metamodel describes the abstract syntax of a 
modeling language with meta-class diagrams and 
package diagrams, the key to 
accurately and completely extract needed part of the 
metamodel is parsing the relations between the 
elements of the metamodels, i.e. which elements are 
used to define given elements, and which elements 
are defined by given elements. 

For a package, the algorithms 1 and 2 traverse 
metaclasses inside it according to the relations 
between them, i.e. generalizations and associations 
(including combinations), and if and only if the 
metaclasses between which there are such relations 
are extracted. This assures that needed metaclasses 
all can be extracted and extracted metaclasses all are 
right. It should be pointed out that when the 
algorithms extract metaclasses with OCL 
expressions, there may be superfluous metaclasses 
because OCL expressions are not deeply parsed in 
semantics. 

Similarly, for the overall package structure of a 
metamodel, the algorithm 3 traverses packages 
according to the relations between them, i.e. 
inclusions, imports, and merges, and if and only if 
the packages between which there is such relations 
are extracted. This assures that needed packages all 
can be extracted and extracted packages all are right. 
d) Tool Support  
The algorithms used in the approach can be 
implemented in object-oriented modeling tools built-
in metamodels without too much difficulty. The 
modeling tools can build package models and class 
models with package diagrams and class diagrams, 
respectively, and can save the models as XML files 
or the others. The built-in metamodels are also 
described in XML files or the others in the object-
oriented modeling tools, and thus it is not difficult 
for the tools to show the built-in metamodels as 
package diagrams and meta-class diagrams. 
Therefore, it is feasible to integrate the module that 
implements the approach with the tools. 
e) Compliance 
According to explicit relations (such associations 
and inheritances) and implicit relations analyzed 
from OCL expressions, the approach only traverses 
and extracts elements from a metamodel for forming 
a new metamodel, and does not modify and add 
metamodel elements, and thus the new metamodel 
holds only necessary and sufficient metamodel 
elements according to the given pruning parameters. 
This means that all instances (models) of the pruned 

metamodel are also instances of the initial input 
metamodel, that is, the extracted metamodel still 
complies with the original one. 
f) Limitation and Future Research 
When handling OCL expressions in the approach, if 
a needed meta-class appears in an OCL expression, 
the other meta-classes in the expression all are 
related to the meta-class. In fact, some of the meta-
classes are unrelated, and related meta-classes can 
be classified as direct correlative meta-classes and 
conditional correlative ones. If an OCL expression 
includes conditional statements, distinguishing 
different alternative segments of a metamodel (e.g. 
labeling or coloring) is better treatment. The above 
work can be finished by aid of an OCL parser. 

As for the input of the pruning metamodel 
algorithms, what the paper gives are a metamodel, 
specified packages, and options, etc. We plan to 
consider the necessity to take meta-relations as the 
input of the pruning algorithms.  

Our algorithms only can prune the metamodels 
like UML, and we also plan to study other kinds of 
metamodels to provide a general pruning approach. 
g) Threats to Validity 
Because we measure UML 2.4.1 in terms of counts 
for metamodel elements and relations between the 
elements, there is no threat to the measurements. 

The metamodels like UML all are defined in 
MOF or extended based on UML, CWM, SysML, 
and SPEM etc. that also are defined in MOF, and 
thus the principle of building these metamodels is 
the same as UML’s. Therefore, UML 2.4.1 is a 
representative of metamodels like UML in the paper 
and our algorithms have universality for pruning 
metamodels like UML.  

A possible threat is lack of a formal proof of the 
correctness of the algorithms since the proof is a 
supplemental proof. 

4 RELATED WORK 

Sagar Sen et al., present a metamodel pruning 
algorithm (2009). They omit that package is an 
important mechanism for organizing the elements of 
a lager metamodel into groups, and think that the 
multiplicity * of UML is optional, and thus delete all 
meta-associations with *. In fact, multiplicity is a 
specification of the range of allowable cardinalities 
which an entity (including a relation) may assume 
(OMG, 2011a), and thus multiplicity * has specific 
semantics for defining metamodel elements. Their 
algorithm only considers the meta-classes appearing 
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in OCL expressions, and not the meta-classes related 
to these meta-classes just because the related meta-
classes do not appear in the OCL expressions. Arnor 
Solberg et al. point out the importance of pruning 
metamodels from the aspects of model-driven 
development and aspect-oriented modeling (2009), 
but do not further give solutions. Jung Ho Bae et al., 
propose an algorithm for pruning small metamodels 
for seven types of UML diagrams (2008), and their 
algorithm does not consider packages and OCL 
expressions in UML metamodel and optional 
parameters. 

For the comprehension and maintenance of 
metamodels, Strüber et al., present a tool that 
supports the decomposition of a meta-model into 
clusters of metamodel elements (Daniel et al., 2013). 
They apply clustering algorithms to obtain segments 
of metamodels, and our algorithm is for extracting 
the needed submetamodels that are complete in 
syntax and semantics according to the definition 
relations between metaclasses. 

The static slicing technologies of class models 
are similar to ours. Jaiprakash et al. present an 
algorithm for static slicing of UML architecture 
models (2009), and their slicing criterion only 
consists of one class and one message. Huzefa Kagdi 
et al., propose an idea to enrich slicing criterion 
(2005), and only defines several concepts for 
context-free slicing of single UML class model. 
Fangjun et al propose a slicing algorithm for class 
diagrams (2004), and their algorithm is designed for 
dependence analysis for class diagrams by simply 
finding all relevant classes for a given class. Arnaud 
et al. present a language to build model slicers 
(2011), which can extract model slices from domain-
specific models, and the built slicers can take 
dependent path length, optional classes, and optional 
properties as input, but do not take into account 
OCL expressions and packages, and thus their work 
is unsuited to prune metamodels. 

5 CONCLUSIONS 

The metamodels are important information sources 
with their own characteristics, and one only needs 
parts of the large and complex metamodels in many 
cases. According to the characteristics, the paper 
presents an approach to automatically bi-
directionally extract needed part from a metamodel 
like UML by parsing network structure of packages 
and calculating metaclass models. Moreover, a 
pruned metamodel complies with its initial 
metamodel, and its size is agilely controlled with 

input options. The approach can service to a variety 
of applications that need to prune metamodels. 
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