Photoplethysmogram Fits Finger Blood Pressure Waveform for non-Invasive and minimally-Intrusive Technologies - Evaluation of Derivative Approaches

Gonzalo Tapia, Matias Salinas, Jaime Plaza, Diego Mellado, Rodrigo Salas, Carolina Saavedra, Alejandro Veloz, Alexis Arriola, Juan Idiaquez, Antonio Glaría

Abstract

The purpose of this work is to fit Photoplethysmography (PPG) to finger Arterial Pressure (fiAP) waveform using derivative approaches. Derivative approaches consider using Linear Combination of Derivatives (LCD) and Fractional Derivatives (FDPa). Four informed healthy subjects, aging 35:811:0 years old, agreed to perform Handgrip maneuvers. Signals are recorded continually; a Finapres NOVA device is used for fiAP, while a BIOPAC System is used for PPG and ECG. PPG is smoothed and segmented by heartbeat; recording sections interfered with spiky blocking noise, are eliminated. Finally, PPG is processed using LCD and FDPa and their results are enriched using Lasso technique. Twenty records per subject at rest and twenty at raised BP are analyzed. Results show PPG to fiAP fitting errors 5:38%0:91 at resting fiAP and 5:86%1:21 at raised fiAP, being always lower than 15%, suggesting that derivative approaches could be suitable for medical applications.

References

  1. Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 28(3):R1-R39.
  2. Baruch, M. C., Warburton, D. E., Bredin, S. S., Cote, A., Gerdt, D. W., and Adkins, C. M. (2011). Pulse decomposition analysis of the digital arterial pulse during hemorrhage simulation. Nonlinear biomedical physics, 5(1):1.
  3. Chatterjee, K. (1999). Physiologic and pharmacologic maneuvers in the differential diagnosis of heart murmurs and sounds. Technical report.
  4. Elgendi, M. (2012). Standard terminologies for photoplethysmogram signals. Current cardiology reviews, 8(3):215-219.
  5. Finapres (2015). Finapres medical systems (2015). http://www.finapres.com/products/finapres-nova. Accessed: 2015-04-18.
  6. Galli, C., Camus, J. M., Fischer, E., Cabrera, I., and Risk, M. R. (2004). La velocidad de la onda del pulso en la evaluación vascular de pacientes con insuficiencia renal. Rev Fed Arg Cardiol, 33:212-217.
  7. Gesche, H., Grosskurth, D., Küchler, G., and Patzak, A. (2012). Continuous blood pressure measurement by using the pulse transit time: comparison to a cuffbased method. European journal of applied physiology, 112(1):309-315.
  8. Glaría, A., Taramasco, C., and J., D. (2010). Methodological proposal to estimate a tailored to the problem specificity mathematical transformation: Use of computer intelligence to optimize algorithm complexity and application to auditory brainstem responses modeling. In Advanced Information Networking and Applications Workshops (WAINA), 2010 IEEE 24th International Conference on, pages 775-781.
  9. Guyton, A. C. and Hall, J. E. (2011). Tratado de fisiolo gía médica. Elsevier,, Barcelona, 12 edition.
  10. Herrmann, R. (2014). Fractional calculus: An introduction for physicists. World Scientific, Singapore.
  11. Kaplan, N. (2004). Hipertensión arterial sistémica: mecanismos y diagnóstico, in Braunwald (Ed) Tratado de cardiología . Madrid: Marban Libros.Edition 6.
  12. Liu, Q., Yan, B. P., Yu, C.-M., Zhang, Y.-T., and Poon, C. C. (2014). Attenuation of systolic blood pressure and pulse transit time hysteresis during exercise and recovery in cardiovascular patients. IEEE Transactions on Biomedical Engineering, 61(2):346-352.
  13. Loverro, A. (2004). Fractional calculus: history, definitions and applications for the engineer. Rapport technique, University of Notre Dame: Department of Aerospace and Mechanical Engineering.
  14. Pan, J. and Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE transactions on biomedical engineering, (3):230-236.
  15. Payne, R., Symeonides, C., Webb, D., and Maxwell, S. (2006). Pulse transit time measured from the ecg: an unreliable marker of beat-to-beat blood pressure. Journal of Applied Physiology, 100(1):136-141.
  16. Pen?az, J. (1973). Photoelectric measurement of blood pressure, volume and flow in the finger. In Digest of 10th International Conference on Medical Biological Engineering, Dresden, East Germany, page 104.
  17. Salinas, M. (2016). Hacia una tps wk para la estimación de la presión arterial. Unpublished Degree Work to obtain the Title of Ingeniero Civil Biomédico. U. de Valparaíso, Chile.
  18. Serón, P., Mun˜oz, S., and Lanas, F. (2010). Nivel de actividad física medida a trav és del cuestionario internacional de actividad física en poblaci ón chilena. Revista médica de Chile, 138(10):1232-1239.
  19. Tapia, G. and Glaría, A. (2015). Artificial neural network detects physical stress from arterial pulse wave. Revista Ingeniería Biom édica, 9(17):21-34.
  20. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), pages 267-288.
  21. Wong, M. Y.-M., Poon, C. C.-Y., and Zhang, Y.-T. (2009). An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: a half year study on normotensive subjects. Cardiovascular Engineering, 9(1):32-38.
  22. Zahedi, E., Chellappan, K., Ali, M. A. M., and Singh, H. (2007). Analysis of the effect of ageing on rising edge characteristics of the photoplethysmogram using a modified windkessel model. Cardiovascular Engineering, 7(4):172-181.
  23. Zheng, D., Allen, J., and Murray, A. (2008). Determination of aortic valve opening time and left ventricular peak filling rate from the peripheral pulse amplitude in patients with ectopic beats. Physiological measurement, 29(12):1411.
Download


Paper Citation


in Harvard Style

Tapia G., Salinas M., Plaza J., Mellado D., Salas R., Saavedra C., Veloz A., Arriola A., Idiaquez J. and Glaría A. (2017). Photoplethysmogram Fits Finger Blood Pressure Waveform for non-Invasive and minimally-Intrusive Technologies - Evaluation of Derivative Approaches . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017) ISBN 978-989-758-212-7, pages 155-162. DOI: 10.5220/0006143901550162


in Bibtex Style

@conference{biosignals17,
author={Gonzalo Tapia and Matias Salinas and Jaime Plaza and Diego Mellado and Rodrigo Salas and Carolina Saavedra and Alejandro Veloz and Alexis Arriola and Juan Idiaquez and Antonio Glaría},
title={Photoplethysmogram Fits Finger Blood Pressure Waveform for non-Invasive and minimally-Intrusive Technologies - Evaluation of Derivative Approaches},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017)},
year={2017},
pages={155-162},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006143901550162},
isbn={978-989-758-212-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017)
TI - Photoplethysmogram Fits Finger Blood Pressure Waveform for non-Invasive and minimally-Intrusive Technologies - Evaluation of Derivative Approaches
SN - 978-989-758-212-7
AU - Tapia G.
AU - Salinas M.
AU - Plaza J.
AU - Mellado D.
AU - Salas R.
AU - Saavedra C.
AU - Veloz A.
AU - Arriola A.
AU - Idiaquez J.
AU - Glaría A.
PY - 2017
SP - 155
EP - 162
DO - 10.5220/0006143901550162