A Robust Descriptor for Color Texture Classification Under Varying Illumination

Tamiris Negri, Fang Zhou, Zoran Obradovic, Adilson Gonzaga

Abstract

Classifying color textures under varying illumination sources remains challenging. To address this issue, this paper introduces a new descriptor for color texture classification, which is robust to changes in the scene illumination. The proposed descriptor, named Color Intensity Local Mapped Pattern (CILMP), incorporates relevant information about the color and texture patterns from the image in a multiresolution fashion. The CILMP descriptor explores the color features by comparing the magnitude of the color vectors inside the RGB cube. The proposed descriptor is evaluated on nine experiments over 50,048 images of raw food textures acquired under 46 lighting conditions. The experimental results have shown that CILMP performs better than the state-of-the-art methods, reporting an increase (up to $20.79) in the classification accuracy, compared to the second-best descriptor. In addition, we concluded from the experimental results that the multiresolution analysis improves the robustness of the descriptor and increases the classification accuracy.

References

  1. Arvis, V., Debain, C., Berducat, M., and Benassi, A. (2004). Generalization of the cooccurrence matrix for colour images: application to colour texture classification. Journal of Image Analysis and Stereology, 23:63-72.
  2. Bianconi, F., Harvey, R., Southam, P., and Fernández, A. (2011). Theoretical and experimental comparison of different approaches for color texture classification. Journal of Electronic Imaging, 20(4).
  3. Campbell, N. W., Thomas, B. T., and Troscianko, T. (1996). Segmentation of natural images using self-organising feature maps. In Proceedings of British Machine Vision Conference, pages 223-232.
  4. Chan, C. H., Kittler, J., and Messer, K. (2007). Multispectral local binary pattern histogram for componentbased color face verification. InFirst IEEE Int. Conf. Biometrics: Theory, Appl. and Systems, pages 1-7.
  5. Cusano, C., Napoletano, P., and Schettini, R. (2013). Illuminant invariant descriptors for color texture classification. In Computational Color Imaging, volume 7786 of LNCS, pages 239-249. Springer.
  6. Cusano, C., Napoletano, P., and Schettini, R. (2014). Combining local binary patterns and local color contrast for texture classification under varying illumination. J. Opt. Soc. Am. A, 31(7):1453-1461.
  7. Cusano, C., Napoletano, P., and Schettini, R. (2016). Evaluating color texture descriptors under large variations of controlled lighting conditions. J. Opt. Soc. Am. A, 33(1):17-30.
  8. de Wouwer, G. V., Scheunders, P., Livens, S., and Dyck, D. V. (1999). Wavelet correlation signatures for color texture characterization. Pattern Recognition, 32(3):443 - 451.
  9. Drimbarean, A. and Whelan, P. (2001). Experiments in colour texture analysis. Pattern Recognition Letters, 22(10):1161 - 1167.
  10. Ferraz, C. T., Junior, O. P., and Gonzaga, A. (2014). Feature description based on center-symmetric local mapped patterns. In Proceedings of the 29th Annual ACM Symposium on Applied Computing, pages 39-44.
  11. Gonzalez, R. C. and Woods, R. E. (2008). Digital Image Processing (3rd Edition). Prentice-Hall, Upper Saddle River, NJ, USA.
  12. Hanbury, A., Kandaswamy, U., and Adjeroh, D. A. (2005). Illumination-invariant morphological texture classification. In Proceedings of the 7th Int. Symp. Mathematical Morphology, pages 377-386.
  13. Jain, A. and Healey, G. (1998). A multiscale representation including opponent color features for texture recognition. IEEE Transactions on Image Processing, 7(1):124-128.
  14. Junior, O. L., Delgado, D., Goncalves, V., and Nunes, U. (2009). Trainable classifier-fusion schemes: An application to pedestrian detection. In 12th Int. IEEE Conf. Intell. Transp. Syst., pages 1-6.
  15. Kandaswamy, U., Adjeroh, D. A., Schuckers, S., and Hanbury, A. (2012). Robust color texture features under varying illumination conditions. IEEE Trans. Syst., Man, and Cybern., Part B: Cybernetics, 42(1):58-68.
  16. Maenpaa, T. and Pietikinen, M. (2004). Classification with color and texture: jointly or separately? Pattern Recognition, 37(8):1629 - 1640.
  17. Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell., 24(7):971-987.
  18. Ojala, T., Pietikinen, M., and Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1):51 - 59.
  19. Oliva, A. and Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vision, 42(3):145-175.
  20. Palm, C. (2004). Color texture classification by integrative co-occurrence matrices. Pattern Recognition, 37(5):965 - 976.
  21. Palm, C. and Lehmann, T. M. (2002). Classification of color textures by gabor filtering.MG&V International Journal, 11(2/3):195-219.
  22. Paschos, G. (2000). Fast color texture recognition using chromaticity moments. Pattern Recognition Letters, 21(9):837 - 841.
  23. Poirson, A. B. and Wandell, B. A. (1996). Pattern color separable pathways predict sensitivity to simple colored patterns. Vision Research, 36(4):515 - 526.
  24. Sengur, A. (2008). Wavelet transform and adaptive neurofuzzy inference system for color texture classification. Expert Systems with Applications, 34(3):2120 - 2128.
  25. Setchell, C. J. and Campbell, N. W. (1999). Using colour gabor texture features for scene understanding. In 7th International Conference on Image Processing and its Applications, volume 1, pages 372-376.
  26. Vadivel, A., Sural, S., and Majumdar, A. K. (2007). An integrated color and intensity co-occurrence matrix. Pattern Recogn. Lett., 28(8):974-983.
Download


Paper Citation


in Harvard Style

Negri T., Zhou F., Obradovic Z. and Gonzaga A. (2017). A Robust Descriptor for Color Texture Classification Under Varying Illumination . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-225-7, pages 378-388. DOI: 10.5220/0006143403780388


in Bibtex Style

@conference{visapp17,
author={Tamiris Negri and Fang Zhou and Zoran Obradovic and Adilson Gonzaga},
title={A Robust Descriptor for Color Texture Classification Under Varying Illumination},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={378-388},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006143403780388},
isbn={978-989-758-225-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)
TI - A Robust Descriptor for Color Texture Classification Under Varying Illumination
SN - 978-989-758-225-7
AU - Negri T.
AU - Zhou F.
AU - Obradovic Z.
AU - Gonzaga A.
PY - 2017
SP - 378
EP - 388
DO - 10.5220/0006143403780388