Modeling of Blood Perfusion in Dependence of Scanning Angle from LDPI Data

Jan Kubicek, Iveta Bryjova, Marek Penhaker, Vladimir Kasik, Zbynek Labza, Martin Cerny, Martin Augustynek

Abstract

The paper deals with issue of the modelling and analysis of a scanning angle influence on the blood perfusion, and consequent proposal for their elimination. The first essential step of analysis is angle stabilization. In this step, we utilize special artificial arm allowing for a measuring angle adjustment in the scale of two axes. The modelling allows for simulation of perfusion units (PU) in the form of the quadratic model, which is consequently recalculated in the form of the linear expression. The second part of the analysis deals with the PU modelling in the dependence of the distance. In our analysis, we particularly use a segment of middle finger and forearm. In the last part, we propose theoretical conception of the curvature correction influence. This theoretical proposal leads to the relationship between measured and real PU parameter.

References

  1. Augustynek, M., Labza, Z., Penhaker, M., Korpas, D., & Society, I. C. (2010). Verification of set up dualchamber pacemaker electrical parameters. 2010 Second International Conference on Computer Engineering and Applications: Iccea 2010, Proceedings, Vol 2, 168-172. doi:10.1109/iccea.2010.187
  2. Basak, K., Dey, G., Mahadevappa, M., Mandal, M., Sheet, D., Dutta, P.K. 2016. Learning of speckle statistics for in vivo and noninvasive characterization of cutaneous wound regions using laser speckle contrast imaging. Microvascular Research, 107, pp. 6-16.
  3. Bevilacqua, A., Barone, D., Baiocco, S., Gavelli, G. A 2016. Novel approach for semi-quantitative assessment of reliability of blood flow values in DCECT perfusion. Biomedical Signal Processing and Control, 31, pp. 257-264.
  4. Blazek, P., Krenek, J., Kuca, K., Krejcar, O., Jun, D., & Ieee. (2015). The biomedical data collecting system. 2015 25th International Conference Radioelektronika (Radioelektronika), 419-422.
  5. Brezinova, J., Hudak, R., Guzanova, A., Draganovska, D., Izarikova, G., & Koncz, J. (2016). Direct metal laser sintering of ti6al4v for biomedical applications: Microstructure, corrosion properties, and mechanical treatment of implants. Metals, 6(7). doi:10.3390/met6070171.
  6. Cerny, M., Martinak, L., Penhaker, M., & Rosulek, M. (2008). Design and implementation of textile sensors for biotelemetry applications. In A. Katashev, Y. Dekhtyar, & J. Spigulis (Eds.), 14th nordic-baltic conference on biomedical engineering and medical physics (Vol. 20, pp. 194-197).
  7. Cerny, M., & Penhaker, M. (2009). Circadian rhythm monitoring in homecare systems. In C. T. Lim & J. C. H. Goh (Eds.), 13th international conference on biomedical engineering, vols 1-3 (Vol. 23, pp. 950- 953).
  8. Goei, H., van der Vlies, C.H., Ho, M.J., Tuinebreijer, W.E., Nieuwenhuis, M.K., Middelkoop, E., van Baar, M.E. 2016. Long-term scar quality in burns with three distinct healing potentials. A multicenter prospective cohort study Wound Repair and Regeneration, 24 (4), pp. 721-730.
  9. Ida, T., Iwazaki, H., Kawaguchi, Y., Kawauchi, S., Ohkura, T., Iwaya, K., Tsuda, H., Saitoh, D., Sato, S., Iwai, T. 2016. Burn depth assessments by photoacoustic imaging and laser Doppler imaging Wound Repair and Regeneration, 24 (2), pp. 349-355.
  10. Elamin, S.E., Dickson, J.K., Mackie, I.P. 2015. Is Laser Doppler imaging (LDI) a measure of burn depth? Burns, 41 (2), p. 413.
  11. Klosová, H., Štetinský, J., Bryjová, I., Hledík, S. and Klein, L. 2013. Objective evaluation of the effect of autologous platelet concentrate on post-operative scarring in deep burns. Burns., DOI: 10.1016/j.burns. 2013.01.020.
  12. Kubicek, J., Penhaker, M., Bryjova, I., & Augustynek, M. (2016). Classification method for macular lesions using fuzzy thresholding method. In E. Kyriacou, S. Christofides, & C. S. Pattichis (Eds.), Xiv mediterranean conference on medical and biological engineering and computing 2016 (Vol. 57, pp. 239- 244).
  13. Benikovsky, J. (2016). Scalability optimization of seamless positioning service. Mobile Information Systems. doi:10.1155/2016/9714080
  14. Majernik, J., & Jarcuska, P. (2012). Education of clinical disciplines in pre and post-graduate study oriented on increasing of newest infectious diseases knowledge. In A. Isman (Ed.), 3rd international conference on new horizons in education - inte 2012 (Vol. 55, pp. 604- 611).
  15. Majernik, J., Jarcuska, P., & Ieee. (2014). Web-based delivery of medical education contents used to facilitate learning of infectology subjects. 2014 10th International Conference on Digital Technologies (Dt), 225-229.
  16. Marek, T., & Krejcar, O. (2015). Optimization of 3d rendering in mobile devices. In M. Younas, I. Awan, & M. Mecella (Eds.), Mobile web and intelligent information systems (Vol. 9228, pp. 37-48).
  17. Penhaker, M., Darebnikova, M., & Cerny, M. (2011). Sensor network for measurement and analysis on medical devices quality control. In J. J. Yonazi, E. Sedoyeka, E. Ariwa, & E. ElQawasmeh (Eds.), Etechnologies and networks for development (Vol. 171, pp. 182-196).
  18. Penhaker, M., Kasik, V., & Snasel, V. (2013). Biomedical distributed signal processing and analysis. In K. Saeed, R. Chaki, A. Cortesi, & S. Wierzchon (Eds.), Computer information systems and industrial management, cisim 2013 (Vol. 8104, pp. 88-95).
  19. Simonsen, C.Z., Schmitz, M.L., Madsen, M.H., Mikkelsen, I.K., Chandra, R.V., Leslie-Mazwi, T., Andersen, G. 2016. Early neurological deterioration after thrombolysis. Clinical and imaging predictors () International Journal of Stroke, 11 (7), pp. 776-782.
  20. Schindler, T.H. 2016. Myocardial blood flow. Putting it into clinical perspective (Journal of Nuclear Cardiology, 23 (5), pp. 1056-1071.
  21. PERIMED AB, 2008. PeriScan PIM3 System - Extended User Manual, July retrieved 2012, URL http://www.perimed-instruments.com/.
  22. Shin, Y., Yi. H.S. 2016. Diagnostic accuracy of laser Doppler imaging in burn depth assessment. Systematic review and meta-analysis Burns.
  23. Stetinsky, J., Klosova, H., Kolarova, H., Salounova, D., Bryjova, I., & Hledik, S. (2015). The time factor in the ldi (laser doppler imaging) diagnosis of burns. Lasers in Surgery and Medicine, 47(2), 196-202. doi:10.1002/lsm.22291
  24. Thieme, D., Spilker, G., Lefering, R., Weinand, C. 2016. O2C Laser Doppler and Digital Photo Analysis for Treatment Evaluation of Beta-Glucan versus Provitamin Pantothenic Acid of Facial Burns Facial Plastic Surgery, 32 (2), pp. 225-231.
Download


Paper Citation


in Harvard Style

Kubicek J., Bryjova I., Penhaker M., Kasik V., Labza Z., Cerny M. and Augustynek M. (2017). Modeling of Blood Perfusion in Dependence of Scanning Angle from LDPI Data . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2017) ISBN 978-989-758-216-5, pages 110-117. DOI: 10.5220/0006142801100117


in Bibtex Style

@conference{biodevices17,
author={Jan Kubicek and Iveta Bryjova and Marek Penhaker and Vladimir Kasik and Zbynek Labza and Martin Cerny and Martin Augustynek},
title={Modeling of Blood Perfusion in Dependence of Scanning Angle from LDPI Data},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2017)},
year={2017},
pages={110-117},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006142801100117},
isbn={978-989-758-216-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2017)
TI - Modeling of Blood Perfusion in Dependence of Scanning Angle from LDPI Data
SN - 978-989-758-216-5
AU - Kubicek J.
AU - Bryjova I.
AU - Penhaker M.
AU - Kasik V.
AU - Labza Z.
AU - Cerny M.
AU - Augustynek M.
PY - 2017
SP - 110
EP - 117
DO - 10.5220/0006142801100117