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Abstract: Multiwords are vital to better Natural Language Processing (NLP) systems for more effective and efficient 
parsers, refining information retrieval searches, enhancing precision and recall in Medical Language 
Processing (MLP) applications, etc. The Lexical Systems Group has enhanced the coverage of multiwords in 
the Lexicon to provide a more comprehensive resource for such applications. This paper describes a new 
systematic approach to lexical multiword acquisition from MEDLINE through filters and matchers based on 
empirical models. The design goal, function description, various tests and applications of filters, matchers, 
and data are discussed. Results include: 1) Generating a smaller (38%) distilled MEDLINE n-gram set with 
better precision and similar recall to the MEDLINE n-gram set; 2) Establishing a system for generating high 
precision multiword candidates for effective Lexicon building. We believe the MLP/NLP community can 
benefit from access to these big data (MEDLINE n-gram) sets. We also anticipate an accelerated growth of 
multiwords in the Lexicon with this system. Ultimately, improvement in recall or precision can be anticipated 
in NLP projects using the MEDLINE distilled n-gram set, SPECIALIST Lexicon and its applications.

1 INTRODUCTION 

This section introduces: first, the SPECIALIST 
Lexicon; second, the importance of multiwords in 
NLP; third, the background and purpose of 
developing a new n-gram-based system for building 
lexical multiwords. 

1.1 The SPECIALIST Lexicon 

The SPECIALIST Lexicon, distributed in the Unified 
Medical Language System (UMLS) Knowledge 
Sources by the National Library of Medicine (NLM), 
is a large syntactic lexicon of biomedical and general 
English, designed and developed to provide the 
lexical information needed for the SPECIALIST 
Natural Language Processing System (McCray et al., 
1993). Lexical records are used for part-of-speech 
(POS) tagging, indexing, information retrieval, 
concept mapping, etc. in many NLP projects, such as 
Lexical Tools (McCray et al., 1994), MetaMap 
(Aronson, 2001; Aronson and Lang, 2010), cTAKES 
(Savova, 2010), Sophia (Divita et al., 2014), gSpell 
(Divita et al., 2000), STMT (Lu and Browne, 2012), 

SemRep, UMLS Metathesaurus, ClinicalTrials.gov, 
etc. It has been one of the richest and most robust NLP 
resources for the NLP/MLP community since its first 
release in 1994. It is important to keep the Lexicon up 
to date with broad coverage to ensure the success of 
NLP applications that use it. 

Each lexical entry in the Lexicon records the 
syntactic, morphological, and orthographic 
information needed by the SPECIALIST NLP 
System. Terms must meet 3 requirements to qualify 
as lexical entries: 1) part-of-speech, 2) inflections, 
and 3) a special unit of lexical meaning by 
themselves. Linguists in the Lexical Systems Group 
(LSG) look at the usage of candidate terms from 
various sources to add terms into the Lexicon if the 
above three requirements are met. Terms (base forms 
and inflectional variants) may be single words or 
multiwords - namely words that contain space(s). If it 
is a multiword, such as “ice cream” or “hot dog”, it is 
called a lexical multiword (LexMultiword or LMW). 
Single words in the Lexicon have increased 2.6 times 
from 180,468 in 2002 to 468,655 in 2016. These 
Lexicon single words cover only about 10.62% of 
unigrams (single words) from titles and abstracts in 
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MEDLINE.2016. However, single-word Lexicon 
terms comprise 98.42% of MEDLINE unigrams if the 
word count (WC) is taken into consideration. In other 
words, the current Lexicon has a very high recall rate 
of single words in MEDLINE, because most 
frequently used single words in MEDLINE are 
covered. As for LMWs, we observe a continuous 
growth in the Lexicon from 88,324 (32.86%) in 2002 
to 446,928 (48.81%) in 2016. Both the high coverage 
of existing single words and the trend of increasing 
growth of LMWs in the Lexicon lead to our position 
that multiword acquisition is key for future Lexicon 
building. 

1.2 Multiwords in NLP 

Multiwords are vital to the success of high quality 
NLP applications (Sag et al., 2002; Fraser, 2009). 
First, multiwords are ubiquitous. Technical 
terminologies in many specialized knowledge 
domains, particularly in areas like medicine, 
computer science and engineering, are often created 
as Multiword Expressions (MWEs) (Frantzi et al., 
2000; Green et al., 2013; Ramisch, 2014). Second, 
MWEs are hard to deal with in NLP tasks, such as 
identification, parsing, translation, and 
disambiguation, not only because MWEs have a large 
amount of distinct phenomena, but also due to the 
absence of major syntactic theories and semantic 
formalisms. Our Lexicon with multiwords remedies 
these issues. For example, most NLP applications on 
word segmentations are word-oriented 
(tokenization), relying on POS taggers, stemmers, 
and chunkers to segment each MWE as a phrasal unit 
from the sentence. This process can be improved if 
multiwords can be identified as a phrasal unit directly 
(such as through a Lexicon lookup) and not processed 
further by taggers, e.g. phrasal preposition (“because 
of”, “due to”), and adverbs (“on time”). Thus, POS 
ambiguity can be reduced through identifying the 
POS of these MWEs. Third, non-decomposable 
MWEs, such as fixed phrases (“kingdom come”, “by 
and large”) and idioms (“kick the bucket”, “shoot the 
breeze”), are very challenging tasks for NLP 
syntactically as well as semantically. While syntactic 
aspects of idiom usage necessitates a beyond-Lexical-
level solution to those non-decomposable MWEs, 
fixed phrases are handled well as LMWs in our 
Lexicon. NLP techniques, such as Query Expansion, 
do not work well on fixed-phrase MWEs for concept 
mapping, unless they are seen as LMWs. For 
example, “hot dog” should not be expanded as “high 
temperature canine” to find its concept. Instead, a 
direct Lexicon look up of “hot dog” (E0233017) 

without further query expansion resolves issues 
caused by fixed-phrase MWEs. Furthermore, the 
Metathesaurus concept associated with a sentence 
often coincides with the longest multiword in the 
sentence. This idea is implemented in MetaMap by 
identifying the longest LMWs in sentences for 
mapped concept ranking. Accordingly, a 
comprehensive lexicon with a rich resource of MWEs 
is an essential component to a more precise, effective, 
and efficient NLP system. 

1.3 MWEs and LMWs 

Research on Multiword Expressions (MWEs) has 
been growing since the late 1990s. State of the art 
methods including statistical association measures 
(Silva and Lopes, 1999; Fazly et al., 2009; Pecina, 
2010), machine learning (Boukobza and Rappoport, 
2009; Tsvetkov and Wintner, 2011; Green et al., 
2011), syntactic patterns (Seretan and Wehrli, 2009; 
Kim and Baldwin, 2010; Green et al., 2013), web 
queries (Takahashi and Morimoto, 2013), semantic 
analysis (Pearce, 2001; Baldwin et al., 2003), and a 
combination of the above methods (Calzolari et al., 
2002; Bejček et al., 2013; Sangati and Cranenburgh, 
2015) are used in MWE research for acquisition, 
identification, interpretation, disambiguation and 
other applications. Despite a great deal of research on 
MWEs, there is no approach that fits perfectly for 
building LMWs in the SPECIALIST Lexicon. LMWs 
are a subset of MWEs due to our requirements that a 
legitimate Lexical entry must have a POS, inflections, 
and be a unit of meaning.  In short, the broader notion 
of MWEs are distinguished from LWMs in four ways. 
First, a collocation (an arbitrary statistically 
significant association between co-occurring items) is 
not necessarily a LMW because it is not necessarily 
qualified as a Lexical entry. For example, 
“undergoing cardiac surgery” occurs frequently 
(3,770 hits in 3,062 documents) in the 2016 
MEDLINE n-gram set, but it is not a LMW because 
it is not functioning as a special unit of meaning by 
itself. Moreover, this collocation is sometimes, but 
not always, a single POS. On the other hand, its 
subterm, “cardiac surgery”, which occurs frequently 
(37,171 hits in 22,404 documents) in MEDLINE, is a 
LMW. In other words, frequency alone is not 
sufficient to determine if a term is a LMW. For the 
same reason, some phrases are not LMWs. For 
example, “in the house” is not a LMW while “in 
house” is. Second, verb particle constructions are 
handled by complementation types (Browne et al., 
2000) in Lexical records to coordinate lexical 
meaning with syntactic characteristics of the verb. 
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For example, “beat someone up” can be constructed 
from the Lexical record of “beat”, as shown in Figure 
1. Similarly, light verbs that are covered within 
Lexical records, such as “make love” and “give birth”, 
are included in the Lexical records of “make” 
(E0038623) and “give” (E0029785), respectively. 
The information on these types of MWEs is stored 
inside the Lexical records and they are not considered 
LMWs (not a base form or inflectional variants of a 
Lexical entry). However, they can be 
retrieved/identified by a parser based on the Lexicon. 
Third, non-decomposable idioms are beyond the 
scope of the Lexicon, such as “kick the bucket” and 
“shoot the breeze”. Aligning the syntactic analysis of 
idiomatic phrases with their semantic interpretations 
is beyond the scope of what a lexicon can accomplish. 
Thus, they are not under consideration here. Fourth, 
due to the complicated nature of multiwords, much 
previous MWE research only focuses on bi-grams or 
tri-grams, which do not meet the requirement of 
including up to five-grams to reach an estimated 
recall value of 99.47% of multiwords (Lu et al., 
2015). 

{base=beat 
entry=E0012175 
 cat=verb 
 variants=irreg|beat|beats|beat|beaten|beating| 
 intran 
 intran;part(about) 
 tran=np 
 tran=np;part(back) 
 tran=np;part(up) 
 tran=np;part(down) 
 tran=np;part(in) 
 link=advbl 
 cplxtran=np,advbl 
 nominalization=beating|noun|E0219216 
} 

Figure 1: Lexical record of the verb “beat”. 

2 MOTIVATION 

Previously, an element word approach (Lu et al., 
2014) was used to build the Lexicon by linguists 
through a web-based computer-aided tool, LexBuild 
(Lu et al., 2012). Unigrams with high frequency (WC) 
from the MEDLINE n-gram set that are not in the 
Lexicon were used as element words for finding new 
LMW candidates through the Essie search engine (Ide 
et al., 2007). There are several issues with this 
approach: 1) it is time consuming; 2) multiwords 
associated with high frequency element words do not 
necessarily have high frequency; 3) new multiwords 

associated with processed element words are missed. 
If we use the mean value, 65%, as an estimated 
multiword ratio based on the empirical measurement 
(Ramisch, 2014), it will take more than 21 years for 
current LSG staff to add all multiwords to the Lexicon 
by this approach (on average, 20,000 terms are added 
by LSG staff annually). And this estimate does not 
account for the fact that many new multiwords are 
continuously being created by biomedical researchers 
and English users in general. Thus, we decided to 
develop a new system to effectively build LMWs to 
the Lexicon by using an n-gram approach. MEDLINE 
was chosen as the corpus because it is the biggest and 
most commonly used resource in the biomedical 
domain. The MEDLINE n-gram set (MNS) was 
generated by the following steps: 1) English titles and 
abstracts from MEDLINE documents are collected 
and then tokenized to sentences and words (tokens); 
2) by requirements, the MNS includes up to 5-grams 
with information of associated document count (DC) 
and word count (WC); 3) n-gram and DC|WC are 
used as key and values in Java HashMap class for n-
gram retrieval; 4) due to the large scale, the computer 
program for retrieving n-grams exceeds the 
maximum keys in the Java HashMap class (230-1) 
when n > 3. Thus, a new model is developed to 
resolve this issue. This model involves processes of 
splitting, grouping, filtering, combining and sorting 
(Lu et al., 2015). The MNS is generated by above 
processes and has been distributed annually to the 
public since 2014. The MNS provides comprehensive 
raw n-gram data from titles and abstracts of 
MEDLINE. Due to its large-scale size (> 19M n-
grams), it is difficult to be handled by computer 
programs with complicated algorithms. So, a distilled 
MEDLINE n-gram set (DMNS), with reduced size, 
higher precision and similar recall in terms of LMWs, 
is required for the multiword acquisition task and 
useful for NLP applications.  

3 APPROACH - FILTERS 

Filters (exclusive filters) are designed to be applied 
on the MNS to generate the DMNS by trapping 
invalid LMWs. The design goal of these filters is set 
to keep the similar (high) recall rate by not trapping 
valid LMWs. Ideally, all valid multiwords should 
pass through these filters. The precision of the filtered 
n-gram set can be improved significantly by applying 
a series of filters with high recall rate. Exclusive 
filters are developed based on empirical models with 
heuristic rules in this task. They are categorized into 
three types as described below. Patterns and trapped 
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examples are illustrated for each filter in the format 
of [pattern] and “example” in this paper, respectively. 

3.1 General Exclusive Filters 

This type of filter is intuitive and based on surface 
features of terms. Terms composed merely of certain 
characters/words, such as punctuation, digits, 
numbers, spaces and stopwords do not meet the 
requirement of having a special unit of lexical 
meaning to themselves. They are used for the general 
purpose of filtering out invalid LMWs: 
 Pipe Filter: A term that contains pipe(s) is 

trapped because a pipe is used as a field 
separator in most NLP systems.  Trapped 
examples include: “(|r|”, “Ag|AgCl”, etc. 

 Punctuation or Space Filter: A term that 
contains nothing but punctuation or space(s) is 
trapped. Trapped examples include: “=”, “+/-“, 
“<”, “(%)” and “-->”. 

 Digit Filter: A term that contains nothing but 
digit(s), punctuation, and space(s) is trapped. 
Trapped examples include: “2000”, “95%”, “3-
5”, “$1,500”, “(+/10.05)”, “192.168.1.1” and 
“[192, 168]”. 

 Number Filter: A term that contains nothing but 
number(s) is trapped. This filter can be 
considered as a domain filter because all 
numbers are already recorded in the Lexicon. 
Trapped examples include: “two”, “first and 
second”, “one third”, “twenty-eight”, “Four 
hundred and forty-seven” and “half”. 

 Digit and Stopword Filter: A term that contains 
nothing but digit(s) or stopword(s) is trapped. 
Trapped examples include: “50% of”, “of the”, 
“1, 2, and”, “2003 to 2007”, “for >=50%” and 
“OR-462”. 

3.2 Pattern Exclusive Filters 

This type of filter looks for certain matching patterns 
in a term for trapping. Computer programs are 
implemented based on observed empirical patterns. 
Some filters require sophisticated algorithms. 
 Parenthetic Acronym Pattern (PAP) Filter: A 

parenthetic acronym is a conventional way of 
representing an acronym expansion with the 
associated acronym. The pattern is an acronym 
expansion followed by an acronym within a 
closed parenthesis, e.g., [acronym-expansion 
(ACRONYM)]. The expansions of acronyms 
are usually valid multiwords. A term that 
contains this pattern is trapped because it 
contains a potential multiword plus the 

associated acronym and thus cannot be a valid 
LMW. Trapped examples include: “magnetic 
resonance imaging (MRI)”, “imaging (MRI)”, 
“magnetic resonance (MR) imaging” and 
“(CREB)-binding protein (CBP)”. 

 Indefinite Article Filter: A lowercased term that 
starts with an indefinite article and a space, [a ], 
without other n-grams that match as its spelling 
variants (spVar) pattern in the corpus (n-gram 
set) is trapped. Patterns of [a-XXX] and [aXXX] 
are used as the spVar pattern of indefinite 
articles of [a XXX], where XXX represents any 
term. Trapped examples include: “a 
significant”, “a case”, “a case of”, “a dose-
dependent” and “a delivery rate per”. 

 UPPERCASE Colon Filter: A term that contains 
the pattern of [UPPERCASE:] is trapped. In 
MEDLINE, this is a conventional usage for this 
pattern, such as [CONCLUSION:], 
[RESULTS:], [OBJECTIVE:], [METHODS:], 
[MATERIALS AND METHODS:], and 
[BACKGROUND:]. Trapped examples include 
“MATERIALS AND METHODS: The”, “95% 
CI:” and “PHPT:” 

 Disallowed Punctuation Filter: A term that 
contains disallowed punctuation is trapped. 
Disallowed punctuation includes: 
{}_!@#*\;"?~=|<>$`^. Trapped examples 
include: “(n =”, “(P < 0.05)”, “N^N”, “group 
(n=6) received” and “CYP3A7*1C”. 

 Measurement Pattern Filter: A term that 
contains a measurement pattern is trapped. A 
measurement pattern is [number + unit], 
including age (“4-year-old”, “4 year-old”, “four 
year-old”, “4 year-olds” and  “4  years or older 
with”), time (“four months”, “1 January 1991”,  
“from May 2002” and “6 hours plus”), range 
(“2-3 days” and “1-2 tablets”), temperature (“at 
-5 degrees”), dosage (“10 cigarettes per day” 
and “0.1-2.3 mg/day”) and others (“60 inches”, 
“0.5 mg”, “3 mg/EE”, “10 mg/kg” and “50 
mg/kg/day”). 

 Incomplete Pattern Filter: A term that contains 
an incomplete pattern is trapped. A valid 
multiword should have completed parentheses 
or brackets. Incomplete patterns are terms that 
do not have an even number of left and right 
parentheses or square brackets or they are not 
closed. Trapped examples include: “II (Hunter 
syndrome”, “0.05) higher”, “bond]C-C[triple”, 
“(chi(2)” and “interval [95%”. 
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3.3 Lead-End-Term Exclusive Filters 

LMWs do not start with certain terms, such as 
auxiliaries (“be”, “do”, etc.), complementizers 
(“that”), conjunctions (“and”, “or”, “but”, etc.), 
determiners (“a”, “the”, “some”, etc.), modals 
(“may”, “must”, “can”, etc.), pronouns (“it”, “he”, 
“they”, etc.), and prepositions (“to”, “on”, “by”, etc.). 
They are called invalid lead-terms. Similarly, 
multiwords do not end with words in the above-listed 
categories. N-grams ending in them are invalid 
LMWs. They are used in exclusive filters to exclude 
invalid multiwords. Terms from the Lexicon with any 
of the above seven categories are used as invalid lead-
end-term (ILET) candidates. ILETs only comprise 
0.05% (488) of total forms in Lexicon.2016 
(915,583). Notably, ILET candidates are considered 
static because no new terms in the above 7 categories 
have been added since 2010. Please refer to LSG web 
documents on Lead-End-Term filter models for 
details (National Library of Medicine, Lexicon: Lead-
End-Terms Model, 2015). 

 Absolute Invalid Lead-Term Filter: A term that 
leads with an absolute invalid lead-term (AILT) 
is trapped. There are 382 AILTs derived from 
the Lexicon, such as [the], [from], [is] and [of]. 
Trapped examples include: “The results”, “from 
the”, “is a” and “of a”. 

 Absolute Invalid End-Term Filter: A term that 
ends with an absolute invalid end-term (AIET) 
is trapped. There are 407 AIETs derived from 
the Lexicon, such as [with], [the] and [that]. 
Trapped examples include: “patients with”, “at 
the” and “suggest that”. 

 Lead-End-Term Filter: A term that leads with an 
ILET and also ends with an ILET is trapped. 
Trapped examples include: “in a”, “to be”, “with 
a” and “as a”. 

 Lead-Term No SpVar Filter: A term that leads 
with a valid lead-term (VLT) without any other 
term matching its spVar pattern in the same 
corpus is trapped. There are 52 VLTs derived 
from the Lexicon, such as [to], [as], [for] and 
[plus]. Trapped examples include: “to 
determine”, “as a result”, “for example” and 
“plus LHRH-A”. 

 End-Term No SpVar Filter: A term that ends 
with a valid end-term (VET) without any other 
term matching its spVar pattern in the same 
corpus is trapped. There are 27 VETs derived 
from the Lexicon, such as [of], [to], [in] and 
[more]. Trapped examples include: “effects of”, 
“was used to”, “(HPV) in” and “loss of two or 
more”. 

4 TESTS AND RESULTS 

The evaluation of each individual filter, the 
combination of all filters, and the distilled MEDLINE 
n-gram set are discussed in this section. The 2016 
release of the Lexicon and MEDLINE n-gram set are 
used in this paper, unless specified otherwise. 

4.1 Recall Test of Filters 

A recall test model has been established for testing 
each developed filter individually. Recall is defined 
as: TP / (TP + FN), where T is true, F is false, P is 
positive, N is negative. Terms (915,583) in the 
Lexicon are used to test exclusive filters. All Lexicon 
terms are valid (relevant) and should pass through 
filters for preserving high recall rate. In this test, the 
pass-through terms are counted as TP (retrieved, 
relevant) while the trapped terms are FN (not 
retrieved, relevant) for the filtered set. 

Columns 4 and 5 in Table 1 list the recall rate and 
number of trapped terms (FN) for this recall test. The 
results show that all filters meet the design goal to 
have very high recall rates. The lowest recall rate 
(99.9913%) is at filter 15, Lead-Term No SpVar 
Filter. 

4.2 The Distilled N-gram Set 

The distilled MEDLINE n-gram set is generated by 
applying these high recall filters to the MEDLINE n-
gram set in the same sequential order of the first 
column (ID) in Table 1. Let’s say X filters are applied 
to all MEDLINE n-grams. The number of valid 
LMWs (TP) and number of invalid LMWs (FP) of the 
filtered MEDLINE n-gram set after ith filter are TPi 

and FPi, respectively, where i = 0, 1, 2, … X. The 
number of valid LMWs are about the same (TP0 ≅	TP1 ≅ TP2 ≅	… ≅ TPX) if high recall filters are used.  
The number of invalid LMWs is reduced (FP0 > FP1 
> FP2 > … > FPX) from the original MEDLINE n-
gram set to the final distilled MEDLINE n-gram set 
after applying filters. Accordingly, the distilled 
MEDLINE n-gram set (X) has higher precision PX 
and similar recall RX  to the MEDLINE n-gram set (0), 
as shown in equations 1 and 2, respectively, where the 
number of FNi (not retrieved, relevant) is a constant. 

PX = TPX / (TPX + FPX)	≅ TP0 / (TP0 + FPX)  
     > TP0 / (TP0 + FP0)                                 (1) 

  
RX = TPX / (TPX + FNX) = TPX / (TPX + FN0)  												≅ TP0 / (TP0 + FN0)                                 (2) 
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Sixteen high recall rate filters are applied to the 
MEDLINE n-gram set in the same sequential order as 
the first column in Table 1 to filter out invalid LMWs. 
Columns 6, 7 and 8 in Table 1 list the number of 
trapped terms, the passing rate (PR) and cumulative 
passing rate (cum. PR) for all filters applied on the 
MEDLINE n-gram set. The passing rate of the ith 
filter is the pass through terms/total terms when 
applying the ith filter on the MNS individually. The 
pass through terms equals the total terms minus the 
trapped terms. The cum. PR of ith filter is the 
cumulative passing rate after applying i filters in the 
sequential order of the first column in Table 1 to the 
MNS. In other words, the trapped number is the sum 
of trapped terms by filters that apply before the ith 
filter. As a result (i = 16), the distilled MEDLINE n-
gram set, after filtering out the majority (11,922,490) 
of invalid LMWs by these 16 filters, contains about 
38.31% (7,402,848) n-grams of the MEDLINE n-

gram set (19,325,338). Figure 2 shows a schematic 
diagram for generating the distilled MNS by applying 
these filters on the MNS.  These filters are designed 
to independently trap invalid lexMultiwords, so the 
order of filter application does not affect the final 
results. These filters are generic and can be used by 
different NLP projects if they meet the project 
requirements. The Lead-End-Term filters (ID: 12-16) 
have higher efficiency (trapped terms/total terms) by 
trapping more n-grams in this process while the recall 
rate is above 99.99%. Theoretically, the distilled 
MEDLINE n-gram set, preserves valid terms in the 
MNS and thus has higher precision and similar recall 
compared to the MNS. The size of DMNS is reduced 
to 38% of MNS, making it possible for complicated 
computer programs to work in a reasonable time 
frame in practice, such as the SpVar Pattern matcher 
(please see section 5.1). 

Table 1: Results of applying exclusive filters on Lexicon recall test and the MEDLINE n-gram set. 

ID Filter Type Filter Name 
Lexicon Recall Test Applied on the MEDLINE N-gram Set 

Recall Trapped Trapped PR Cum. PR 

1 

General 
Filters 

Pipe 100.0000% 0 7 100.0000% 100.0000% 

2 Punctuation or Space 100.0000% 0 425 99.9978% 99.9978% 

3 Digit 99.9999% 1 132,650 99.3136% 99.3114% 

4 Number 99.9953% 43 4,326 99.9775% 99.2890% 

5 Digit and Stopword 99.9991% 8 157,786 99.1777% 98.4725% 

6 

Pattern 
Filters 

Parenthetic Acronym - 
(ACR) 

100.0000% 0 197,022 98.9647% 97.4530% 

7 Indefinite Article 99.9986% 13 344,403 98.1713% 95.6709% 

8 UPPERCASE Colon 99.9999% 1 113,936 99.3838% 95.0813% 

9 Disallowed Punctuation 99.9986% 13 135,508 99.2625% 94.3801% 

10 Measurement 99.9920% 73 336,112 98.1572% 92.6409% 

11 Incomplete 100.0000% 0 166,356 99.0708% 91.7801% 

12 

Lead-End-
Term 
Filters 

Absolute Invalid Lead-
Term 

99.9943% 52 4,712,162 73.4329% 67.3967% 

13 
Absolute Invalid End-
Term 

99.9997% 3 2,710,470 79.1897% 53.3713% 

14 Lead-End-Term 99.9992% 7 2,687 99.9739% 53.3573% 

15 Lead-Term No SpVar 99.9913% 80 1,450,394 85.9342% 45.8522% 

16 End-Term No SpVar 99.9968% 29 1,458,246 83.5433% 38.3064% 

 

Figure 2: Schematic diagram of the MNS, filters and the distilled MNS.
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4.3 Evaluation of DMNS 

We further verify the DMNS by comparing the 
performance of the MNS and the DMNS. A smaller 
test set is set up by retrieving LMW candidates from 
the Parenthetic Acronym Pattern (PAP) matcher. 
Matchers (inclusive filters) are designed to retrieve 
LMWs from MEDLINE n-grams by trapping valid 
multiwords that match valid LMW patterns. In other 
words, terms trapped by matchers should be valid 
LMWs. The design goal of matchers is set to generate 
high precision LMW candidates. On the other hand, 
the recall of matchers might decrease because not all 
valid LMWs are trapped. 

Acronym expansions are good patterns for a 
matcher because they have a high possibility of 
generating valid LMWs. The PAP matcher model is 
implemented as follows. First, apply Parenthetic 
Acronym Pattern Filter on the MEDLINE n-gram set 
to retrieve terms matching the pattern of [acronym 
expansion (ACRONYM)].  For example, “computed 
tomography (CT)”, “magnetic resonance imaging 
(MRI)”, “Unified Health System (SUS)”, etc. are 
retrieved from the n-gram set. Second, retrieve 
expansions if they match the associated acronym. 
Heuristic rules are implemented, such as checking the 
initial characters of first and last words of the 
expansion to match the first and last characters of the 
associated acronym. For example, the expansion of 
“Unified Health System (SUS)” is identified as an 
invalid LMW because the first initial of the expansion 
(U) does not match the first character of acronym (S). 
Third, remove terms if the expansion is a subterm of 
other expansions in the list. For example, both n-
grams of “cell sarcoma (CCA)“ and “clear cell 
sarcoma (CCA)” pass the first two steps. The invalid 
LMW of “cell sarcoma” is removed in this step 
because it is a subterm of the valid LMW “clear cell 
sarcoma”. 

We applied the PAP matcher to the MNS to 
retrieve LMW candidates. The lowercased core-terms 
of these candidates are collected as the test set. Core-
term normalization is to normalize an n-gram to its 
core form by stripping the leading and ending 
punctuation. For example, “in details,”, “- in details” 

and “- in details,” have the same core-term form of 
“in details”. Core-terms might have punctuation 
internally, such as "in (5) details". It is a useful 
normalization to cluster terms with the same core 
together from the n-gram set in multiword 
acquisition. As a result, 17,707 LMW candidates are 
retrieved by this process. They are tagged by LSG 
linguists and are added to the Lexicon if they are valid 
LMWs. 15,850 candidates in this set are tagged as 
valid LMWs to reach 89.51% precision for this PAP 
matcher, where precision is defined as: TP/(TP+FP), 
as shown in case 1 in Table 2. The recall cannot be 
found because all LMWs from MEDLINE cannot be 
identified in real practice. The result of this PAP 
matcher is used as the baseline for performance test 
to compare the results of other filters and matchers. 
Accordingly, recall in case 1 is set to 1.00 for the 
purpose of comparison.   F1 score is defined as: (2 x 
precision x recall) / (precision + recall), is calculated 
and shown in the last column in Table 2. 

We repeat the same process by applying the PAP 
matcher to the DMNS to retrieve LMWs. The results 
(case 2) show an improvement on F1 score with better 
precision and almost the same recall. This confirms 
the theoretic conclusion and the result of the recall 
test on these filters, that the distilled MEDLINE n-
gram contains almost the same amount of valid 
multiwords as the MEDLINE n-gram set while its 
size is reduced to 38%. Furthermore, the cumulative 
recall rates of these 16 filters on the recall test 
(0.9996, multiple product of recall column  in table 1) 
and the recall rate of case 2 in Table 2 (0.9994) are 
almost identical. This confirms that the approach of 
applying these filters results in a similarly high recall 
rate for both the Lexicon and the test set from PAP 
matcher. Similar results of the Lexicon recall test and 
DMNS in Table 1 and the performance test of the 
PAP matcher on the MNS and the DMNS in Table 2 
for 3 releases (2014 to 2016) of the Lexicon and 
MEDLINE are found to confirm the consistency of 
this approach. 

 
 
 
 
 

Table 2: Performance comparison of MNS, DMNS and SVP matchers on a test set with 17,707 terms. 

Case Test Case - Model TP FP FN TN Precision Recall F1 

1 PAP matcher on MNS (baseline) 15,850 1,857 0 0 0.8951 (1.0000) 0.9447 

2 PAP matcher on DMNS (16 filters) 15,840 1,299 10 558 0.9242 0.9994 0.9603 

3 SVP matcher on case 2 8,094 499 7,756 1,358 0.9419 0.5107 0.6623 
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5 APPLICATIONS ON DMNS 

Despite the high precision of the PAP matcher, it only 
retrieves a small amount of LMW candidates.  Other 
matchers have been developed to retrieve more LMW 
candidates for Lexicon building. 

5.1 Spelling Variant Pattern Matcher 

The Spelling Variant Pattern (SVP) matcher model 
with a complicated algorithm was developed to 
retrieve large amount of LMW candidates. As we 
observed, an n-gram is a good LMW candidate if it 
has spelling variants existing in the same corpus (n-
gram set). A sophisticated computer algorithm was 
developed to identify all n-grams that have potential 
spVars. First, a special normalization program was 
developed to normalize spVars into their canonical 
forms by converting non-ASCII Unicode to ASCII 
(e.g. “Labbé” to “Labbe”), synonym substitution (e.g. 
“St. Anthony's fire” to “Saint Anthony's fire”), rank 
substitution (e.g. “Vth nerve” to “5th nerve”), number 
substitution (e.g. “12-lead” to “twelve-lead”), Roman 
numeral substitution (e.g. “BoHV-I” to “BoHV-1”), 
strip punctuation (e.g. “lamin-A” to “lamin A”), 
stripping genitive (e.g. “Laufe's forceps” to “Laufe 
forceps”), converting to lowercase, and removing any 
space(s). All terms that have the same normalized 
spVar canonical form are identified as spVars to each 
other. The Lexicon.2015 has 379,269 spVars 
(including inflectional spelling variants) in 867,728 
(unique) inflectional variants, and was used to test 
this model. As shown in the recall column in Table 3, 
80.50% of all spVars in the Lexicon are identified by 
spVar normalization (step 1). All identified spVars 
are grouped in spVar classes for further NLP 
processing. Second, a MES (Metaphone, Edit 
distance, and Sorted distance) model is developed to 
improve recall. The MES model is composed of an 
algorithm of Metaphone phonetic code (Philips, 
1990), edit distance (the minimum number of 
operations required to transform one term into the 

other), and minimum sorted distance. Sorted distance 
is the distance between two terms in an alphabetic 
sorted list of a set of terms. It is used to measure the 
similarity of two terms compared to other terms in the 
set. All terms having the same phonetic code and an 
edit distance (ED) less than a specified value are 
collected and sorted. The pair with the minimum 
sorted distance (the closest pair) is identified as 
spVars to each other. For example, “yuppie flu” and 
“yuppy flu” have different spVar canonical forms of 
“yuppieflu” and “yuppyflu”, respectively, and thus are 
not identified as spVars in the step 1, normalization. 
They are identified as spVars in step 2 (MES model), 
because they have the same Metaphone code of 
[YPFL], edit distance of 2, and the minimum sorted 
distance. This step identifies more spVars that cannot 
be identified by normalization in step 1. The recall is 
increased to 97.92% (Table 3). Third, an ES (Edit 
distance and Sorted distance) model is developed for 
further improvement of recall. Terms with an edited 
distance less than a specified value are collected and 
sorted. The pair with the minimum sorted distance is 
identified as being spVars. For example, “zincemia” 
and “zincaemia” are identified as spVars by the ES 
model with an edit distance of 1, while they were not 
identified as spVars in the previous steps, because 
they have different spVar canonical forms of 
“zincemia” and “zincaemia” and also have different 
Metaphone codes of [SNSM] and [SNKM], 
respectively. By relaxing the value of edit distance in 
both models repeatedly, our program reaches 99.72% 
recall on spVar identification in six steps in this test, 
as shown in Table 3. Precision (Prec.), recall, F1, 
accuracy, and running time (RT) of each step in this 
SVP matcher model are shown in Table 3, where 
accuracy is defined as: (TP + TN) / (TP + FP + FN + 
TN). 

For testing purposes, we applied this SVP matcher 
model to the test set from the PAP matcher (case 2 in 
Table 2). The results indicate improvement in 
precision while recall dropped, as shown in case 3 in 
Table 2. This confirms the design characteristics of 
matchers. 

Table 3: Performance analysis of the SVP matcher model. 

Step Algorithm ED TP FP FN TN Prec. Recall F1 Accuracy RT 

1 SpVarNorm N/A 305,309 3,495 73,960 484,964 0.9887 0.8050 0.8874 0.9107 1 min 

2 MES 2 371,385 156,648 7,884 331,811 0.7033 0.9792 0.8187 0.8104 7 hr 

3 ES 1 376,646 270,881 2,623 217,578 0.5817 0.9931 0.7336 0.6848 23 hr 

4 MES 3 377,004 285,046 2,265 203,413 0.5694 0.9940 0.7241 0.6689 8 min 

5 ES 2 378,134 337,461 1,135 150,998 0.5284 0.9970 0.6907 0.6098 26 hr 

6 MES 4 378,211 340,105 1,058 148,354 0.5265 0.9972 0.6892 0.6068 2 min 

 

HEALTHINF 2017 - 10th International Conference on Health Informatics

84



The next step is to apply this SVP matcher model 
to the MNS to generate LMW candidates from 
MEDLINE. The running time of this model on the 
Lexicon took over 56 hours (sum of the RT column 
in Table 3) even with a powerful computer with 192 
GB memory. The running time will be exponentially 
increased when applying the SVP model on the MNS, 
which is over 22 times the size of the Lexicon. This 
is impractical and not feasible in real practice. Thus, 
the smaller size (38%) DMNS is chosen as input to 
replace the MNS for reducing the processing time 
without sacrificing recall. Further purification 
processes of core-term normalization and frequency 
threshold restriction (WC > 150) are also applied to 
reduce the size of the n-gram set for better 
performance. As a result, 752,920 spVars in 269,871 
spVar classes are identified by running this computer 
program for 20 days and are used for LMWs building 
in the SPECIALIST Lexicon. 

5.2 More Filters and Matchers 

Other filters and matchers have also been developed 
to apply to the DMNS to further improve LMW 
building. For example, domain filters exclude terms 
that are in a certain domain, such as single word, 
frequency, and existing in the current Lexicon. 

By requirement, a valid LMW must have a 
meaning. Thus, a term with valid concept(s) has a 
better possibility of being a valid LMW. We utilized 
UMLS Metathesaurus concepts to create one such 
matcher, the Metathesaurus CUI Pattern (MCP) 
matcher. The Synonym Mapping Tool (SMT) in 
STMT (Lu and Browne, 2012) is used to retrieve 
Metathesaurus concepts (CUIs) in this model to 
generate LMW candidates. The SMT is set up to find 
concepts within 2 subterm substitutions by their 
synonyms. The default synonym list in SMT is used. 
In addition, an End-Word Pattern (EWP) matcher was 
also developed. In the biomedical domain, 
multiwords often end with certain words (End-
Words), such as [syndrome] (e.g. “migraine 
syndrome”, “contiguous gene syndrome”), [disease] 
(e.g. “Fabry disease”, “Devic disease”), and so on. 
An End-Word candidate list composed of the top 20 
frequency End-Words for LMWs has been derived 
from the Lexicon. These End-Words are used in the 
EWP matcher to retrieve LMW candidates. 

The combining of filters and matchers improves 
precision. This work focuses on generating high 
precision LMW candidates for effective LMW 
building. On the other hand, the recall of the matchers 
is not emphasized because there are too many 
multiwords yet to be found. 

6 CONCLUSIONS 

A set of high recall rate filters has been developed. 
These filters are used to derive the distilled 
MEDLINE n-gram set, resulting in reducing its size 
to 38%, with better precision and similar recall to that 
of the MEDLINE n-gram set. These filters and the 
distilled n-gram set have been tested against the 
Lexicon and a test set of terms retrieved from MNS 
by PAP matchers. The distilled MEDLINE n-gram 
set is needed for further NLP processes with 
complicated algorithms, such as the SVP matcher 
model, to reduce the running time for retrieving more 
LMW candidates for Lexicon building. 

Other matchers have also been developed and 
evaluated. Combinations of filters and matchers have 
been used to generate high precision LMW 
candidates for effectively building the Lexicon. The 
LSG plans to continuously enhance and develop 
filters and matchers for further improvement. The 
filters and matchers we have developed are generic 
and can be used independently or in combination for 
different research purposes. The approach of 
generating the distilled MEDLINE n-gram set is also 
generic and can be applied to other n-gram sets for 
reducing size and better precision without sacrificing 
recall. Most importantly, this approach provides a 
modular and extendable framework for more and 
better filters and matchers for LMW acquisition and 
NLP research. 

Multiwords are pervasive, challenging and vital in 
NLP. The LSG aims to provide a lexicon with high 
coverage of multiwords matching that of single 
words. We believe the impact of enriched multiword 
acquisition will enhance the precision, recall, and 
naturalness of NLP applications. The SPECIALIST 
Lexicon, the MEDLINE n-gram set and the distilled 
MEDLINE n-gram set (National Library of Medicine, 
Lexicon: The MEDLINE n-gram set, 2016) are 
distributed by the National Library of Medicine 
(NLM) annually via an Open Source License 
agreement. 
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