Modeling of Cardiac Component of Subarachnoid Space Changes in Apnoea Resulting as a Function of Blood Pressure and Blood Flow Parameters - Two Mechanizm of Regulation

Kamila Mazur, Renata Kalicka, Andrzej F. Frydrychowski, Pawel J. Winklewski

Abstract

Experiments were performed in a group of 19 healthy, non-smoking volunteers. The experiment consisted of three apnoeas, sequentially: 30 s apnoea, 60 s apnoea and maximal, that could be done, apnoea. The breath-hold was separated for 5 minutes rest. The following parameters were measured and obtained for further analysis: blood parameters, artery diameter of the internal carotid artery, end-tidal CO2 in expired air, the cardiac (from 0.5 to 5.0 Hz) and slow (< 0.5 Hz) components of subarachnoid space width signal. As a result of the experiment, we observed two different reactions, using the same experimental procedure. It seemed to indicate two different operating modes and two separate models. As a consequence, there are two subsets of slow subarachnoid space width responses to breath-hold in humans. A positive subarachnoid space width changes (slow) component depends on changes in heart rate, pulsatility index and cerebral blood flow velocity. A negative subarachnoid space width changes component is driven by heart rate changes and pulsatility index changes. The different heart-generated arterial pulsation response to experimental breath-hold provides new insights into our understanding of the complex mechanisms governing the adaptation to apnoea in humans. We propose a mathematical methodology that can be used in further clinical research.

References

  1. Cassaglia, P. A., Griffiths, R. I., Walker, A. M., 2008. Sympathetic nerve activity in the superior cervical ganglia increases in response to imposed increases in arterial pressure. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 294: R1255-61.
  2. Cassaglia, P. A., Griffiths, R. I., Walker, A. M., 2009. Cerebral sympathetic nerve activity has a major regulatory role in the cerebral circulation in REM sleep. Journal of Applied Physiology. 106: 1050-6.
  3. Drake, R., Vogl, A. W., Mitchell, A. W. M., 2009. Gray's Anatomy for Students. Elsevier Health Sciences.
  4. Everitt, B. S., Landau, S., Leese, M., 2001. Cluster Analysis (Fourth ed.). Arnold, London.
  5. Frydrychowski, A. F., Guminski, W., Rojewski, M., Kaczmarek, J., Juzwa, W., 2002. Technical foundations for noninvasive assessment of changes in the width of the subarachnoid space with nearinfrared transillumination-backscattering sounding (NIR-TBSS). IEEE Transactions on Biomedical Engineering. 49, 887-904.
  6. Frydrychowski, A. F., Plucinski, J., 2007. New aspects in assessment of changes in width of subarachnoid space with near-infrared transillumination-backscattering sounding, part 2: clinical verification in the patient. Journal of Biomedical Optics. 12, 044016.
  7. Foster, G.E., Sheel, A.W., 2005. The human diving response, its function, and its control. Scandinavian Journal of Medical Science in Sports. 15, 3-12.
  8. Jolly, T. A., Bateman, G. A., Levi, C. R., Parsons, M. W., Michie, P. T., Karayanidis, F., 2013. Early detection of microstructural white matter changes associated with arterial pulsatility. Frontiers in Human Neuroscience. 7, 782.
  9. Kalicka, R., 2014. Basics of data analysis, Gdansk University of Technology Publishing, Gdansk.
  10. Kalicka, R., 2013. Mathematical Modeling of Physio logical Systems to Aid in Diagnosis and Therapy. Academic Publishing House EXIT, Warsaw.
  11. Kazmierski, R., 2011. Podreczniki diagnostyki ultrasonograficznej w neurologii. Czelej.
  12. Li, Z., Zhang, M., Xin, Q., Li, J., Chen, G., Liu, F., Li, J., 2011. Correlation analysis between prefrontal oxygenation oscillations and cerebral artery hemodynamics in humans. Microvascular Research. 82, 304-10.
  13. Linninger, A. A., Tsakiris, C., Zhu, D. C., Xenos, M., Roycewicz, P., Danziger, Z., Penn, R., 2005. Pulsatile cerebrospinal fluid dynamics in the human brain. IEEE Transactions on Biomedical Engineering. 52, 557-565.
  14. Mazur, K., Kalicka, R., 2014. Modeling of subarachnoid space width changes caused by blood circulation in brain vessels. Proceedings of the Twentieth National Conference on Applications of Mathematics in Biology and Medicine.
  15. Paton, J. F., Boscan, P., Pickering, A.E., Nalivaiko, E., 2005. The yin and yang of cardiac autonomic control: vago-sympathetic interactions revisited. Brain Research Reviews. 49, 555-565.
  16. Reis, D. J., Golanov, E. V., Galea, E., Feinstein, D. L., 1997. Central neurogenic neuroprotection: central neural systems that protect the brain from hypoxia and ischemia. Annals of the New York Academy of Sciences. 835, 168-86.
  17. Stanisz, A., 2007. Comprehensible statistics course using STATISTICA.PL - examples from medicine, vol. 1. Basic Statistics, vol. 2. Linear and non-linear models, vol. 3. Multidimensional Analyses. StatSoft, Krakow.
  18. Wagner, B.P., Gertsch, S., Ammann, R.A., Pfenninger, J., 2003. Reproducibility of the blood flow index as noninvasive, bedside estimation of cerebral blood flow. Intensive Care Medicine. 29, 196-200.
  19. Wagshul, M. E., Eide, P. K., Madsen, J. R., 2011. The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS. 8, 5.
  20. Winklewski, P. J., Kot, J., Frydrychowski, A. F., Nuckowska, M. K., Tkachenko, Y., 2013. Effects of diving and oxygen on autonomic nervous system and cerebral blood flow. Diving and Hyperbaric Medicine Journal. 43, 148-56.
  21. Winklewski, P. J., Gruszecki, M., Wolf, J., Swierblewska, E., Kunicka, K., Wszedybyl-Winklewska, M., Guminski, W., Zabulewicz, J., Frydrychowski, A. F., Bieniaszewski, L., Narkiewicz, K.. 2015. Wavelet transform analysis to assess oscillations in pial artery pulsation at the human cardiac frequency. Microvascular Research. 99, 86-91.
  22. Winklewski, P. J., Barak, O., Madden, D., Gruszecka, A., Gruszecki, M., Guminski, W., Kot, J., Frydrychowski, A. F., Drvis, I., Dujic, Z., 2015 Effect of Maximal Apnoea Easy-Going and Struggle Phases on Subarachnoid Width and Pial Artery Pulsation in Elite Breath-Hold Divers. PLoS One. 10, e0135429.
  23. Winklewski, P. J., Tkachenko, Y., Mazur, K., Kot, J., Gruszecki, M., Guminski, W., Czuszynski, K., Wtorek, J., Frydrychowski, A. F., 2015. Sympathetic Activation Does Not Affect the Cardiac and Respiratory Contribution to the Relationship between Blood Pressure and Pial Artery Pulsation Oscillations in Healthy Subjects. PLoS One. 10(8):e0135751.
  24. Wszedybyl-Winklewska, M., Wolf, J., Swierblewska, E., Kunicka, K., Gruszecki, M., Guminski, W., Winklewski, P. J., Frydrychowski, A. F., Bieniaszewski, L., Narkiewicz, K., 2015. Pial artery and subarachnoid width response to apnoea in normal humans. Journal of Hypertension. 33, 1811-7; discussion 1817-8.
Download


Paper Citation


in Harvard Style

Mazur K., Kalicka R., Frydrychowski A. and Winklewski P. (2017). Modeling of Cardiac Component of Subarachnoid Space Changes in Apnoea Resulting as a Function of Blood Pressure and Blood Flow Parameters - Two Mechanizm of Regulation . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (BIOSTEC 2017) ISBN 978-989-758-214-1, pages 140-147. DOI: 10.5220/0006139901400147


in Bibtex Style

@conference{bioinformatics17,
author={Kamila Mazur and Renata Kalicka and Andrzej F. Frydrychowski and Pawel J. Winklewski},
title={Modeling of Cardiac Component of Subarachnoid Space Changes in Apnoea Resulting as a Function of Blood Pressure and Blood Flow Parameters - Two Mechanizm of Regulation},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (BIOSTEC 2017)},
year={2017},
pages={140-147},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006139901400147},
isbn={978-989-758-214-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (BIOSTEC 2017)
TI - Modeling of Cardiac Component of Subarachnoid Space Changes in Apnoea Resulting as a Function of Blood Pressure and Blood Flow Parameters - Two Mechanizm of Regulation
SN - 978-989-758-214-1
AU - Mazur K.
AU - Kalicka R.
AU - Frydrychowski A.
AU - Winklewski P.
PY - 2017
SP - 140
EP - 147
DO - 10.5220/0006139901400147