
A Domain-specific Language for Configurable Traceability Analysis

Hendrik Bünder1, Christoph Rieger2 and Herbert Kuchen2

1itemis AG, Bonn, Germany
2ERCIS, University of Münster, Münster, Germany

Keywords: Traceability, Domain-specific Language, Software Metrics.

Abstract: In safety-critical industries such as the aviation industry or the medical industry traceability is required by
law and specific regulations. In addition, process models such as CMMI require traceability information for
documentation purposes. Although creating and maintaing so-called traceability information models (TIM)
takes a lot of effort, its potential for reporting development progress, supporting project management, and
measuring software quality often remains untapped. The domain-specific language presented in this paper
builds on an existing traceability solution and allows to define queries, metrics, and rules for company- or
project-specific usage. The basis for such an analysis is a query expression to retrieve information from a TIM.
Customizable metrics are then defined to compute aggregated values, which are evaluated against company-
or project-specific thresholds using the rules part of the domain-specific language. The focus of this paper is to
show how the combination of query, metric, and rule expressions is used to define and compute customizable
analyses based on individual requirements.

1 INTRODUCTION

Traceability is the ability to describe and follow an ar-
tifact and all its linked artifacts through its whole life
in forward and backward direction (Gotel and Finkel-
stein, 1994). Many companies create traceability in-
formation models for their software development ac-
tivities either because they are obligated by regula-
tions (Cleland-Huang et al., 2014) or because it is pre-
scribed by process maturity models. However, there
is a lack of support for the analysis of these models
(Bouillon et al., 2013).

Recent research describes how to define and query
traceability information models, (Maletic and Col-
lard, 2009; Mäder and Cleland-Huang, 2013). This is
an essential prerequisite for retrieving specific trace
information from a TIM. However, far too little at-
tention has been paid to taking advantage of further
processing of the gathered trace information. In par-
ticular, information retrieved from a TIM can be ag-
gregated in order to support software development
and project management activities with a “real-time”
overview of the current state of development.

On the other hand, research has been done on
defining relevant metrics for TIMs (Rempel and
Mäder, 2015), but the data collection process is non-
configurable. As a result, potential analyses are lim-

ited to predefined questions and cannot provide com-
prehensive answers to ad hoc or recurring informa-
tion demands. For example, projects using an iterative
software development approach might be interested in
the accomplishments of objectives within each devel-
opment phase, whereas other projects might focus on
a comprehensive documentation during the process of
creating and modifying software artifacts.

The approach presented in this paper fills the gap
between those two areas by introducing a sophisti-
cated analysis language. As a foundation, query ex-
pressions can be used to retrieve information from
TIMs and subsequent metric statements aggregate the
results of an executed query. In addition, rule expres-
sions can be specified so that metric values can be
checked against individually configured thresholds.
All three parts come with an interpreter implemen-
tation so that they cannot only be defined but also ex-
ecuted against a traceability information model. The
analysis language builds on a traceability meta model
that is an instance of the Eclipse Ecore model (Stein-
berg et al., 2008).

This paper contributes a domain-specific trace-
ability analysis language to define queries, metrics
and rules in a fully configurable and integrated way.
Further, the feasibility of the elaborated analysis lan-
guage will be demonstrated by a prototypical in-

374
BÃijnder H., Rieger C. and Kuchen H.
A Domain-specific Language for Configurable Traceability Analysis.
DOI: 10.5220/0006138503740381
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 374-381
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



terpreter implementation for real-time evaluation of
those trace analyses.

Having discussed related work in Section 2, Sec-
tion 3 introduces the query and metric expressions
that are used to retrieve information from TIMs. Af-
terwards, the definition of rules is presented, which
completes the approach with a mechanism to com-
pare metric values with predefined thresholds. In Sec-
tion 4, DSL and our prototypical implementation are
discussed before the paper concludes in Section 5.

2 RELATED WORK

Requirement traceability is essential for verifying the
progress and completeness of a software implementa-
tion (Völter, 2013). While in the aviation or medical
industry traceability is prescribed by law (Cleland-
Huang et al., 2014), there are also process matu-
rity models requesting a certain level of traceability
(Cleland-Huang et al., 2012b). Traceable artifacts
such as requirement, unit of code, or test case, and the
links between those - such as specifies, implements,
and verifies - constitute the TIM (Mader et al., 2013).

In contrast to the efforts made to create and main-
tain a TIM, only a fraction of practitioners takes ad-
vantage of the inherent information according to re-
cent research (Cleland-Huang et al., 2014). How-
ever, Rempel and Mäder (Rempel and Mäder, 2015)
showed that the number of related requirements or the
average distance between related requirements have a
positive correlation with the number of defects asso-
ciated with these requirements. In addition, empiri-
cal data shows that traceability models also facilitate
maintenance tasks and the evolution of software sys-
tems (Mäder and Egyed, 2015).

Due to the lack of sophisticated tool support,
the opportunities discussed above are often missed
(Bouillon et al., 2013). In contrast to the highly con-
figurable traceability information models, traceabil-
ity tools such as IBM Rational DOORS (IBM, 2016)
just offer a predefined set of evaluations, often with
simple tree or matrix views (Schwarz, 2012). As a
consequence, especially company- or project-specific
information regarding software quality and project
progress cannot be retrieved and thus remains unused.

This paper introduces a textual domain-specific
language (Mernik et al., 2005) that is focused on de-
scribing customized query, metric, and rule expres-
sions in the domain of software traceability. The lan-
guage is implemented using the Xtext framework that
is part of the Eclipse ecosystem. Based on a grammar
in EBNF-like format, a parser and an Eclipse Ecore
Model, representing the meta model of the language,

are generated (Bettini, 2013; Völter, 2013).
The IDE generated by the Xtext language work-

bench provides extensible features such as syn-
tax highlighting, live validation, code completion,
and automatic formatting (The Eclipse Foundation,
2016c). Additionally, Xtext validates references be-
tween concrete model elements that are available in
the so-called scope of the current language element.
The syntactically and semantically valid elements are
determined by the configurable scope provider as part
of the Xtext framework and may contain elements
of different Ecore models (The Eclipse Foundation,
2016c).

3 DEFINING AND INTEGRATING
THE DOMAIN-SPECIFIC
LANGUAGE

3.1 Composition of Modeling Layers

Figure 1: Conceptual Integration of Model Layers.

Figure 1 shows the integration between the dif-
ferent model layers referred to in this paper, starting
with the Eclipse Ecore Model as a shared meta meta
model. The Xtext framework used to define the analy-
sis language generates an instance of this model (The
Eclipse Foundation, 2016c), representing the Analysis
Language Meta Model (ALMM). Individual queries,
metrics, and rules are specified within a concrete in-
stance, the Analysis Language Model (ALM), by us-
ing the developed syntax.

Likewise, the Traceability Information Model
used in this paper contains the actual traceability
information, for example the concrete Requirement
“RQ1”. It is again an instance of a formal abstract de-
scription, the so called Traceability Information Con-
figuration Model (TICM). The TICM describes trace-
able artifact types, e.g. Requirement or Java file, and
the available link types, e.g. implements. This model

A Domain-specific Language for Configurable Traceability Analysis

375



itself is based on a proprietary Traceability Informa-
tion Meta Model (TIMM) that defines the basic con-
structs such as a traceable artifact type and a trace-
able link type by inheriting basic EClass and ERefer-
ence elements of the Eclipse Ecore Model (Gronback,
2009).

Since the analysis language is related to the
Eclipse Ecore Model, concepts such as EClass def-
initions can be referenced. Further references be-
tween concepts on the meta model layer (ALMM us-
ing TIMM) are the prerequisite for subsequently ref-
erencing instances on the concrete model layer. For
instance, a query definition of the ALM could at some
point reference the traceable artifact type “Require-
ment” in the TICM. On the model layer this reference
is established by referring to a concrete instance of
the traceable type, e.g. the result of the specific query
“JavaClassesForRequirement” references “RQ1”.

To structure the DSL, the analysis language itself
is hierarchically subdivided into three components,
namely the query, metric, and rule expressions. In
order to establish clear interfaces, only query expres-
sions may reference elements of the traceability infor-
mation configuration model. Metric and rule expres-
sions are built on top of query expressions and are
thus independent from TICM and TIM. Live evalua-
tion is performed by the query interpreter accessing
the query expression’s AST and applying the respec-
tive computation to the concrete TIM. The result of
such a query execution (as elaborated in the following
subsections) is then used by the interpreter to evaluate
the metric and rule expressions.

Figure 2: Traceability Information Configuration Model.

Figure 2 shows an example traceability informa-
tion configuration model that defines the traceable ar-
tifacts and link types. The arrowheads in Figure 2 rep-
resent the primary trace link direction. However, trace
links can be traversed in both directions (Cleland-
Huang et al., 2012a). Besides being the abstract
description for the TIM instances, the configuration
model artifacts can be referenced within query lan-
guage expressions.

3.2 Querying the Traceability
Information Model

The query expressions are part of the analysis lan-
guage which is defined as a textual domain-specific
language using the Xtext framework.

query "tracesFromRequirementToJUnitTest"

traceFromTo(Requirement ,JUnitTest) as paths

.collect(paths.getStart.getName as name ,

count(1) as testCases)

.groupBy(paths.getStart.getName)

Listing 1: Sample query definition.

Listing 1 shows an example query that retrieves
the shortest path between each instance of Require-
ment and JUnitTest artifacts from a given TIM. The
query definition starts with the keyword query that is
followed by the actual name as string literal. The cen-
ter of the query is the function traceFromTo that takes
a source and a target traceable artifact as parameters.
The available traceable artifacts are determined by the
evaluation of the traceability information configura-
tion model of the TIM. The function itself encapsu-
lates an algorithm to find the shortest path between all
instances of the two specified configuration model ar-
tifacts in the TIM. All resulting paths are assigned to
the variable paths that is subsequently used to access
these within the query. Each path object in the list of-
fers several convenience functions such as getStart
that returns the start element of the trace or getEnd
that returns the last artifact of the trace.

The result of an executed query expression as well
as the result of a metric or rule expression is returned
as a tabular structure. For computing the query ex-
pression’s result, the query interpreter iterates through
all list entries in the variable paths that contain the re-
sults of the traceFromTo function called before. For
every entry in the variable paths a new row in the
tabular structure is created. The column definition
is introduced by the keyword collect. For example
in Listing 1, two column headings are defined called
name and testCases, each introduced by the keyword
as. The first part of the column definition is the ref-
erence to the variable paths that represent a list. The
next part is introduced by “.” which is followed by the
functions available on a single entry of the path list.
After entering “.”, the Xtext proposal provider (The
Eclipse Foundation, 2016c) will propose all functions
available on each list element. Introduced by another
“.”, further method calls will be proposed based on the
return type of the former function call. The second
column specifies an aggregation function that counts
all entries in a given column per row. Based on the
column index passed as a parameter to the count func-

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

376



tion, the number of entries in each row of that column
is counted. In general, the result of this function will
be 1 per row since there is only one value per row and
column but in combination with the groupBy function
the number of aggregated values per cell is computed.
The groupBy function of Listing 1 aggregates all start
artifacts (“Requirement”) with the same name.

Figure 3: Traceability Information Model.

While queries can be expressed without an in-
stance of the configuration model, the execution is
done in a traceability information model. The query
expression of Listing 1 is applied to the example TIM
shown in Figure 3 by the query interpreter. The result
is a tabular structure with three rows and two columns
where the first row contains the name “RQ1” in col-
umn one and the number “5” as count of the available
traces in column two, for example. Even though there
are five Requirement artifacts in the given TIM, only
three of them are linked to a JUnitTest artifact so that
there are three rows in the tabular result description.

The query expressions offer a powerful and well-
integrated mechanism to retrieve information from a
given TIM. At this point the data retrieved from the
TIM can be understood as raw data that needs to be
further processed to make use of it. In the following,
it is explained how query expression results can be
aggregated to metrics that represent information on
the quality and progress of a project.

3.3 Defining Individual Metrics

A software quality metric can be defined as a “func-
tion whose inputs are software data and whose out-
put is a single numerical value that can be interpreted
as the degree to which software possesses a given
attribute that affects its quality” (Society, 2004). A
well-known and simple software metric is lines of

code (Riguzzi, 1996), but there are also specific met-
rics for traceability models. These include, e.g., the
average distance between requirements, the coverage
between two levels of specification or full-depth from
requirement to the lowest level, and linkage statis-
tics concerning the count of related higher/lower level
trace artifacts (Rita J. Costello and Dar-Biau Liu,
1995; Rosenberg et al., 1998). Complimentary to re-
cent research that focuses on specific traceability met-
rics and their relevance (Rempel and Mäder, 2015),
the approach described in this paper introduces an
analysis language to define individual metrics. By
utilizing this approach, a project team or a quality
department can establish and evolve custom metrics
until they meet their specific requirements.

An Xtext grammar in EBNF-like format defines
the available features including referencing queries,
arithmetic operations, and operator precedence using
parentheses. The metrics grammar of the analysis lan-
guage itself has two main components. One is the re-
sult declaration that encapsulates the result of a previ-
ously specified query1. The other is an arbitrary num-
ber of metrics definitions that may aggregate query
results or other metrics recursively.

MetricDefinition:

'metric' name=ID '=' expression=

MetricsExpression;

PlusOrMinus returns MetricsExpression:

MulOrDiv(({Plus.left=current} '+' |

{Minus.left=current} '-') right=MulOrDiv)*;

MulOrDiv returns MetricsExpression:

MetricAtomic(({MulOrDiv.left=current} op=('*'|'/

')) right=MetricAtomic)*;

MetricAtomic returns MetricsExpression:

'('MetricsExpression')' |

{MetricsRef} metric=[MetricsDefinition]|

{ColumnSelection} col=ColumnSelection

{DoubleConstant} value=DOUBLE |

{SumFunction} sum= SumFunction |

{CountFunction} count=CountFunction;

Listing 2: Grammar rules for metric expressions.

Listing 2 shows the most important rules that
describe the possible arithmetic expressions used in
metrics. Since the corresponding parser generated
by ANTLR works top-down, the grammar must not
be left recursive (Bettini, 2013). Listing 2 shows
the grammar to support the four basic arithmetic op-

1The formal description of the syntax of a query is quite
lengthy and extends beyond the scope of this paper, in
which we focus on the metrics and rules language. From
the example in subsection 3.2, the reader gets an impres-
sion of what a query looks like.

A Domain-specific Language for Configurable Traceability Analysis

377



erations as well as the correct use of parentheses.
While the PlusOrMinus and MulOrDiv rules to en-
able ANTLR to handle a left recursive grammar are
well described by Bettini (2013), the MetricAtomic
rule contains the essential computations of the metrics
grammar. First, the rule allows for the usage of con-
stant double values. Second, metric expressions can
contain pre-defined functions to sum up or count the
results of a query. Third, columns from the result of a
query can be referenced so that metric expressions per
query expression result row can be computed. Finally,
metric expressions can refer to other metric expres-
sions to further aggregate already accumulated values
as shown in the last line of Listing 6.

SumFunction:

'sum' '(' columns+=ColumnSelection

(',' columns+=ColumnSelection)* ')';

Listing 3: Rule for sum aggregation.

Exemplary for the predefined aggregation func-
tions, the SumFunction rule shown in Listing 3 de-
scribes the syntax for summing up the results of
a query. After the keyword sum, any number of
ColumnSelections can be stated as parameters. To
compute the result, the interpreter will iterate over all
the rows of the query expression’s result and sum up
the values of the referenced columns. Listing 4 shows
the actual ColumnSelection that is also used by the
CountFunction and refers to the query expression’s
result columns. While a concrete metric is specified,
the available columns are proposed in the editor based
on the result declarations in the current scope. In ad-
dition, there is a live validation of the metric expres-
sions that displays error markers as soon as a refer-
enced result declaration or a column within the query
expression result is no longer in scope.

ColumnSelection:

resultDeclaration=[ResultDeclaration|ID] '.'

column= [analysis::Column];

Listing 4: Rule for column selection.

Using the given grammar, reusable metric expres-
sions can be defined to compute the number of re-
lated requirements (NRR) as described by Rempel
and Mäder (2015), i.e., the number of directly and
indirectly referenced requirements from one require-
ment to another for all requirement artifacts in the
TIM. The basis for this metric are all trace links from
the TICM shown in Figure 2 that could be instantiated
to describe a trace between two requirements.

result relatedRequirements from

traceFromTo(Requirement , Requirement) as paths

.collect(paths.getStart.getName as srcRequirement ,

paths.getEnd.getName as trgtRequirement)

metric NRR=cnt(relatedRequirements.srcRequirement)

Listing 5: Metric: number of related requirements.

The inlined query expression in Listing 5 returns
a tabular result that contains the shortest path be-
tween every pair of requirement artifacts from the
given TIM. The path between each Requirement ar-
tifact can contain multiple other artifacts since the
traceable links are bidirectionally navigable. In the
example TIM from Figure 3, the trace from “RQ1”
to “RQ2” contains the following artifacts “RQ1” to
“TS2” to “JC1” to “TS2” to “RQ2”. The problem
of circular dependencies causing infinite loops in the
computation of the available paths is solved by the
depth-first algorithm implementation.

The first column of the tabular result structure
contains the name of the source requirement in the
path while the second column holds the name of the
target requirement. The following NRR metric ex-
pression uses the cnt function to compute the number
of related requirements.

Table 1: NRR Metric: Tabular Result Structure.

Requirement NRR
RQ1 2
RQ2 2
RQ3 2
RQ4 1
RQ5 1

Table 1 shows the tabular result structure of the
metric expression executed against the sample TIM
from Figure 3. The tabular result structure is made of
two columns derived from the query and metric ex-
pression as described above.

result pathLengthPerRequirement from

traceFromTo(Requirement , Requirement) as paths

.collect(paths.getStart.getName as srcRequirement ,

sum(paths.getLength) as pathLength)

.groupBy(paths.getStart.getName)

metric ADRR= pathLengthPerRequirement.pathLength/

NRR

Listing 6: Composition of metric expressions.

Listing 6 shows the reuse of an existing metric to
compute the average distance between two require-
ments as explained by Rempel and Mäder (2015).
The query expression shown in the example returns
the shortest path between two requirements already
aggregated per source requirement. The subsequent
metric takes the pathLength column from the query

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

378



expression result and divides every entry by the al-
ready computed metric NRR shown in Listing 5.

The combination of configurable query expres-
sions with configurable metric definitions allows
users to define their individual metrics. The analy-
sis language is complemented by the rules grammar,
which is described in the following section.

3.4 Evaluating Metrics

A metric value itself delivers few insights to the qual-
ity or the progress of a project. However, compar-
ing a metric value to a pre-defined threshold or an-
other metric value exposes information. The gram-
mar contains rules for standard comparison opera-
tions which are equal, not equal, greater than, smaller
than, greater or equals, and smaller or equals. A rule
expression can either return a warning or an error re-
sult that may both be detailed by an individual mes-
sage. Since query and metrics result descriptions im-
plement the same tabular result interface as described
above, rules can be applied to both. Finally, the result
of an evaluated rule expression is also stored using the
same tabular interface.

WarnIf returns RuleSpecification:

'rule' name=ID '=' 'warnIf(' ruleBody=RuleBody')';

RuleBody:

('m:' metric=[metrics::MetricsDefinition]|

'c:' column=[ResultDeclaration|ID] '.' column=

[analysis::Column]) compareOperator=Operator

compareTo=RuleAtomic ',' msg=STRING;

Listing 7: Syntax for rule expressions.

The RuleBody rule shown in Listing 6 is the cen-
tral part of the rules grammar. On the left side of
the compareOperator, a metric expression or a col-
umn from a query expression result can be referenced.
During definition of the rule, the metric expressions
and query result columns available in the current
scope are proposed. The next part of the rule is the
comparisonOperator followed by a RuleAtomic value
to compare the expression to. The RuleAtomic value
is either a constant number or a reference to another
metric expression. The evaluation of rule, metric and
query expressions during run-time is implemented us-
ing Xtend, a Java extension developed as part of the
Xtext framework and especially designed to navigate
and interact with the analysis languages Eclipse Ecore
models (The Eclipse Foundation, 2016b).

rule checkADRR=warnIf(m: ADRR >4.0, "High average

distance between related requirements")

Listing 8: Sample rule definition.

The metric specified in Listing 6 is referenced by
an instance of the warning grammar rule shown in
Listing 8 and it is compared to the value 4.0. In case
that the metric contains a greater value, a warning
message is produced and stored in the result object
created by the rule interpreter. In other cases there
will be an automatically produced message stating
that the metric value is as expected. To create a stag-
gered analysis, a warning and an error message for the
same metric expression can be defined, thus classify-
ing the result in two categories with varying severity.
For example, an ADRR value greater than 4.0 causes a
warning while an ADRR value higher than 6.0 causes
an error message. The rule interpreter will recognize
that there are two rule expressions based on the same
metric and will only return one result.

The result of an interpreted rule expression con-
tains not only information about the compared met-
ric values but can also provide a meaningful warning
or error message. All in all, the rule grammar final-
izes the analysis language capabilities by providing
mechanisms to compare aggregated information from
a TIM against custom thresholds.

4 DISCUSSION

To demonstrate the feasibility of the designed anal-
ysis language and perform flexible evaluations of
traceability information models, a prototype was de-
veloped. The analysis language is based on the
aforementioned Xtext framework and integrated into
Eclipse using its plug-in infrastructure (The Eclipse
Foundation, 2016a). In addition, an interpreter was
implemented that evaluates query, metric, and rule ex-
pressions ad hoc whenever the respective expression
is modified and saved. Currently, both components
are tentatively integrated in a software solution that
envisages a commercial application. Therefore, the
analysis language is configured to utilize a proprietary
TIMM from which traceability information configu-
ration models and concrete TIMs are defined.

Within our implementation, traceable artifacts
from custom traceability information configuration
models as shown in Figure 2 can be used for query,
metric, and rule definitions. Due to an efficient im-
plementation of the depth-first algorithm used by the
traceFromTo function, queries are (re-)executed im-
mediately when a query is saved. The efficiency of
the depth-first algorithm implementation was verified
by interpreting expressions using TIMs ranging from
1,000 to 50,000 traceable artifacts.

Table 2 shows the duration for interpreting the
analysis expression from Listing 1 against generated

A Domain-specific Language for Configurable Traceability Analysis

379



Table 2: Duration of Analysis.

Total Artifacts Start Artifacts Duration (in s)
1,000 300 0.012
8,000 1,500 0.1

50,000 8,500 2.2

TIMs of different sizes. The first column shows the
overall number of traceable artifacts and links in the
TIM. The second column displays the number of start
artifacts for the depth-first algorithm implementation,
i.e. the number of “Requirement” artifacts for the ex-
emplary analysis expression. The third column con-
tains the execution time on a computer with Intel Core
i7-4700MQ processor at 2.4 GHz and 16 GB RAM.
As shown, executing expressions can be done effi-
ciently even for large size models.

Defining and evaluating analysis statements with
the prototypical implementation has shown that the
approach is feasible to collect metrics for differ-
ent kinds of traceability projects. The analysis lan-
guage can for example be utilized to create company-
specific metrics. Within the same industry sector
some companies use a model-driven approach, others
apply test-driven development, or directly start coding
from a textual requirement. When a company uses an
entity DSL to describe the data model of the appli-
cation, it could be valuable to compute the average
number of attributes per entity, assuming that a high
number indicates bad design. In case of a company
deciding to directly code from a textual requirement,
a metric to calculate the number of classes per re-
quirement in relation to the number of words in the
requirement definition might be reasonable to assess
its specificity. If there is meaningful information in
such company-specific metrics, the company initially
needs to discover them. However, the more impor-
tant finding is that company-specific metrics can be
created, prototyped, and evolved easily by employing
the analysis language.

Since the analysis language is based on a highly
configurable TIMM, it allows for a large variety of
traceable artifacts, including formerly unused doc-
uments such as documentation, test results or even
tickets from collaboration tools (Delater and Paech,
2013). Including artifacts from different systems,
metrics can also be used to indicate the quality or
the progress of a certain software product. A met-
ric to measure the quality of a software component
could compute the number of defects related to a spe-
cific unit of code by traversing the TIM to find all
links between those two artifacts. Using a project-
specific rule to highlight code units causing a high
number of defects gives an indication on where to per-
form quality measures, e.g. code reviews. The current

progress of a software development project can be ex-
posed by defining a staggered analysis. Taking the
exemplary TICM from Figure 2, a first query could
find all Requirement artifacts that are not linked to a
Technical Specification artifact. From a project man-
agement perspective the design of these requirements
could be understood as not started. The next part of
the staggered analysis could retrieve the Requirement
artifacts that are linked to a Technical Specification
artifact, but have no trace to a Java Class artifact,
therefore indicating that the implementation has not
yet begun. Relating the described query expression
results to the overall number of Requirement artifacts
measures the project’s progress with regard to differ-
ent phases of development.

The approach presented in this paper is bound
to limitations. In particular, an investigation of real
world projects is pending in order to assess the im-
pact of the developed DSL on software quality man-
agement practices.

In addition, any analysis is only as good as the un-
derlying traceability information model, thus requir-
ing wary treatment of metrics results. For example,
we discovered missing trace links through our queries
in a preliminary analysis of a real world TIM, as those
were configured in the TICM but never instantiated in
the TIM. On the positive side, analysis statements are
usually defined and executed by domain experts, so
that problems with the underlying data can often be
identified and resolved quickly.

These are, however, no inherent limitations of the
approach but rather constitute future work in deploy-
ing the DSL in real-world scenarios that benefit from
traceability metrics.

5 CONCLUSION

The DSL described in this paper offers functions and
expressions to analyse existing TIMs, structured in
query, metric, and rule component. For retrieving
traceable artifacts and trace links, query expressions
can be defined. In a subsequent metric expression,
the results of an interpreted query are condensed to
a comparable value using arithmetic operations and
aggregate functions. In order to assess this value in
context, rule expressions are defined to compare met-
rics’ values among each other or against a threshold
value.

The introduced approach closes the gap between
information retrieval, metrics definition, and re-
sult evaluation, thus forming a solid foundation for
project- or company-specific metrics. Regarding flex-
ibility, a configuration model makes it completely in-

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

380



dependent from the specific type of traced artifacts.
Further, it is well integrated into an established work-
bench and development environment using Xtext and
the Eclipse Modeling Framework. Features such as
live validation and error markers detect broken or out-
dated expressions early and ensure a rich user experi-
ence.

The focus of future work should be on identi-
fying new industry-relevant metrics by applying the
proposed approach to real-world projects. Also, the
data mining field offers statistical methods through
association rules or regression algorithms to find pat-
terns and gain insights from large data sources such
as traceability models.

To sum up, the analysis language proposed in
this paper offers an integrated approach to close the
gap between querying traceability information mod-
els and defining configurable metric expressions. The
concept of ad hoc evaluation of expressions was
demonstrated in a prototypical implementation.

REFERENCES

Bettini, L. (2013). Implementing domain-specific languages
with Xtext and Xtend. Community experience dis-
tilled. Packt Pub, Birmingham, UK.

Bouillon, E., Mäder, P., and Philippow, I. (2013). A sur-
vey on usage scenarios for requirements traceability
in practice. Lecture Notes in Computer Science, 7830
LNCS:158–173.

Cleland-Huang, J., Gotel, O., Huffman Hayes, J., Mäder, P.,
and Zisman, A. (2014). Software traceability: Trends
and future directions. In Proceedings of the on Future
of Software Engineering, FOSE 2014, pages 55–69,
New York, NY, USA. ACM.

Cleland-Huang, J., Gotel, O., and Zisman, A., editors
(2012a). Software and Systems Traceability. Springer
London, London.

Cleland-Huang, J., Heimdahl, M., Huffman Hayes, J., Lutz,
R., and Maeder, P. (2012b). Trace queries for safety
requirements in high assurance systems. Lecture
Notes in Computer Science, 7195 LNCS:179–193.

Delater, A. and Paech, B. (2013). Analyzing the tracing of
requirements and source code during software devel-
opment. In Requirements Engineering: Foundation
for Software Quality, pages 308–314. Springer Berlin
Heidelberg.

Gotel, O. and Finkelstein, A. (1994). Analysis of the re-
quirements traceability problem. International Con-
ference on Requirements Engineering.

Gronback, R. C. (2009). Eclipse Modeling Project: A
Domain-Specific Language (DSL) Toolkit. Addison-
Wesley Professional, 1st edition.

IBM (2016). Rational doors. www.ibm.com/software/
products/en/ratidoor.

Mäder, P. and Cleland-Huang, J. (2013). A visual language
for modeling and executing traceability queries. Soft-
ware and Systems Modeling, 12(3):537–553.

Mäder, P. and Egyed, A. (2015). Do developers benefit from
requirements traceability when evolving and main-
taining a software system? Empirical Softw. Eng.,
20(2):413–441.

Mader, P., Gotel, O., and Philippow, I. (2013). Getting back
to basics: Promoting the use of a traceability informa-
tion model in practice. 7th International Workshop on
Traceability in Emerging Forms of Software Engineer-
ing (TEFSE), pages 21–25.

Maletic, J. I. and Collard, M. L. (2009). Tql: A query lan-
guage to support traceability. Proceedings of the 2009
ICSE Workshop on Traceability in Emerging Forms of
Software Engineering, TEFSE 2009.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344.

Rempel, P. and Mäder, P. (2015). Estimating the implemen-
tation risk of requirements in agile software develop-
ment projects with traceability metrics. In Require-
ments Engineering: Foundation for Software Quality,
pages 81–97. Springer International Publishing.

Riguzzi, F. (1996). A survey of software metrics.
Rita J. Costello and Dar-Biau Liu (1995). Metrics for re-

quirements engineering. Journal of Systems and Soft-
ware, 29(1):39–63.

Rosenberg, L., Hammer, T. F., and Huffman, L. L. (1998).
Requirements, testing and metrics. In 15th Annual
Pacific Northwest Software Quality Conference.

Schwarz, H. (2012). Universal traceability. Logos Verlag
Berlin, [Place of publication not identified].

Society, I. C. (2004). IEEE standard for a software quality
metrics methodology: IEEE std 1061-1998 (r2004).
Technical report, IEEE Computer Society.

Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M.
(2008). EMF: Eclipse Modeling Framework. Pearson
Education.

The Eclipse Foundation (2016a). PDE/user guide.
http://wiki.eclipse.org/PDE/User Guide.

The Eclipse Foundation (2016b). Xtend modernized java.
http://www.eclipse.org/xtend/.

The Eclipse Foundation (2016c). Xtext documentation.
https://eclipse.org/Xtext/documentation/.

Völter, M. (2013). DSL engineering: Designing, imple-
menting and using domain-specific languages. Cre-
ateSpace Independent Publishing Platform.

A Domain-specific Language for Configurable Traceability Analysis

381


