
Towards Sharable Application Ontologies for the Automatic
Generation of UIs for Dialog based Linked Data Applications

Michael Hitz1, Thomas Kessel1 and Dennis Pfisterer2
1Cooperative State University Baden-Wuerttemberg, Stuttgart, Germany

2Institute of Telematics, University of Lübeck, Lübeck, Germany

Keywords: User Interface Ontologies, Model Driven User Interfaces, Linked Data Application Modelling.

Abstract: The emerging Internet of Everything is a driving force for businesses to expose their processes as services to
third parties to be integrated into their applications (e.g. the booking of a trip or requesting the quote for a
complex product). To standardize the processes and related data, increasingly semantic web technologies
are applied - leading to a shared conceptualization of the business domains and thus creating a linked data
service ecosystem for domain-specific services. Although the communication on machine-level is standard-
ized by using semantic web technologies, the integration of the user into the overall process is still a manual
task: User Interfaces (UI) for collecting the input data for a process are built manually for multiple platforms
and user groups. The claim of this paper is, that given a linked data service ecosystem, UIs can be modelled
and automatically generated for integration into linked data applications. The paper presents an ontology-
based, model-driven approach for modelling UI variants for automatically generating dialog-based applica-
tions, providing output understood by associated linked data services.

1 INTRODUCTION

The trend toward the digitalisation of business pro-
cesses and the need to expose business functionality
via multiple channels to different user groups led to
a strong adoption of service oriented concepts for
enterprise information systems. Companies offer
services (e.g., as web services) that are driven by
user inputs to invoke processes like ordering goods
or services. This opens new business opportunities
for third parties that aggregate such services to novel
applications. Prominent examples are Uber
(developer.uber.com) or Amazon Marketplaces
(developer.amazonservices.com) who expose their
offerings through proprietary APIs.

Emerging business models such as Distributed
Market Spaces in an Internet of Everything (IoE)
context (e.g., Radonjic-Simic et al., 2016) go even
further and use a generic, non-proprietary data for-
mat. They incorporate semantic web / linked data
approaches (i.e., ontologies) to describe the seman-
tics of the expected input data and thus create a
shared conceptualization of the domain. This allows
multiple suppliers to participate in a transaction
(e.g., providing information for the comparison of
offerings) relying on the same input data and based

on strictly defined semantics leading to a unified
view on the processes; and thus create a linked data
services ecosystem. The industry begins adopting
these principles by defining reliable data interchange
semantics for different domains (e.g., the BiPRO
initiative, www.bipro.net that standardizes business
processes and data for the insurance sector).

Albeit there exists a clear concept on the tech-
nical level for machines to work on and communi-
cate with semantically specified data (i.e., linked
data technologies such as RDF/OWL) there is still a
lack of approaches for the integration of the hu-
man user. Non-trivial user interfaces (UIs) are
needed to collect user input for the business process-
es while supporting a platform-specific user experi-
ence (e.g., web frontends, mobile apps or rich client
desktop apps). To support the specific needs of user
groups and different platforms in a multi-channel
environment, different variants of user interfaces are
required. Currently, these UI variants are mostly
developed manually for each application context.

Given the above mentioned environment of a
linked data ecosystem as a prerequisite, the basic
assumption of the presented paper is that UIs for
dialog based linked data applications can be (1)
automatically generated serving linked data ser-

Hitz M., Kessel T. and Pfisterer D.
Towards Sharable Application Ontologies for the Automatic Generation of UIs for Dialog based Linked Data Applications.
DOI: 10.5220/0006137600650077
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 65-77
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

65

vices and can be (2) reused and shared in different
contexts (e.g., portals or rich client applications).

Linked data services provide a definition of the
semantics of the expected input data using ontolo-
gies. Hence, UIs that provide the required input data
can be used as a frontend for these services. And if
UIs are modelled in a technology-agnostic way this
results in UI descriptions that can be shared and
reused.

To automatically generate UIs for that purpose,
(1) an abstracted UI description is needed to gener-
ate UIs for different technical platforms. To make
the description sharable, it (2) needs to be modelled
in a non-proprietary, standardized way. Finally, to
be used in conjunction with linked data services, (3)
the UI needs to produce an output that conforms to
the input of these services.

This paper proposes an approach, which address-
es these requirements: it uses sharable Application
Ontologies containing the necessary information to
derive UIs for different contexts and to produce
linked data requests as outcome.

Although there exist approaches for model-
driven UI generation (cf. related work, Section 8),
there is - to the best of our knowledge - no widely
accepted approach or UI modelling technique that
solves the aforementioned issues (cf., Meixner et al.,
2011). Traditional approaches (e.g., user interface
description languages - UIDL) rely on proprietary
UI technology focused models. They are strong in
producing technological variants of UIs. The down-
side in their applicability in a linked data context is
the proprietary, UI-focused nature of the modelled
artefacts, which impedes their use in different con-
texts (Coutaz, 2010). In addition, the mapping of
input to target data - if possible at all - encompasses
the creation of many related artefacts and thus being
very complex (e.g. UWE - Kraus et al., 2003). Re-
search regarding the ontology-based generation of
UIs mainly focuses on providing editors for editing
instances of arbitrary ontologies. These generic
interfaces are technical in nature and not suitable for
presentation to a customer as they do not focus on
user experience.

The paper presents a novel approach for the au-
tomatic UI generation of linked data applications
that bridges the gap between the traditional and
ontological approaches. It contributes to the field of
automatic UI generation applied to linked data con-
cepts.

The paper is structured as followed: First, the
problem is demonstrated in more detail along with
an illustrative example used throughout the paper.
Section 3 outlines the proposed solution. Section 4

and 5 provide details for the proposed Application
Ontology. Section 6 outlines the process for deriva-
tion of UIs and resulting instance data followed by
the current state of evaluation of the concept. The
paper closes with related work and conclusion point-
ing out future work.

2 PROBLEM, MOTIVATIONAL
EXAMPLE & REQUIREMENTS

To generate high-quality UIs for dialog applications,
a pure data-model, like a model of the input data for
the underlying business process does not suffice. For
example, UIs usually group information in a
meaningful way. The structure of questions is
usually different from the target data structure of a
consuming service. Most UIs include dynamic
behaviour to guide the user through the data
gathering process in an intuitive way (e.g., prefilling
related information as a city name given a zip code
or showing / hiding information based on provided
data). The information needed to build these aspects
are usually not part of a data-model (Hitz, 2016) and
thus need to be modelled separately.

Example: Consider a (simplified) process collecting
quotes for a flight booking. A customer requests
quotes and thus needs to specify data about the
flight. He supplies information about dates, number
of tickets, return/open-yaw-flight and customer-
related information (e.g., name, billing address etc.)

An excerpt of the possible request data (target
data) based on a user's input is shown in Listing 1. It
is intentionally simplified and represented in
RDF/Turtle notation as instance of an (assumed)
flightbooking ontology. It contains information
about the flight (3 tickets from Hamburg to
Stutgart), return flight (to Hamburg) and an open-
yaw-flight along with data about the customer.

Fig. 1 shows possible UI variants for the user
input dialogs: (a) a desktop application for an agent
and (b) a mobile application for end customers. The
information is structured in meaningful succession
of groups and questions (e.g., Basic travel data,
Flight Information and Your information) and might
have hierarchical relations (e.g., Address data
being part of Your information). The questions are
presented in a reasonable order, using type-related
input controls allowing an intuitive user interaction.
In addition to these structural aspects, the UI needs
to offer dynamic functionality for a satisfying user
experience: input needs to be validated and errors
shown (e.g., if the return date is before the departu-

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

66

 a) Desktop version (agent) b) Mobile version (cutomer)

Figure 1: Possible UIs for the flight booking application sample.

re date), data might be prefilled as reaction to
previous input (e.g., restricting destination airports
that are in served by an already selected departure
airport) and information should be shown / hidden

Listing 1: Instance data for a flight request.

based on previous selections (e.g., hiding open-
yaw- or return flight related information if the user
deselects these options).

Fig. 1, b) shows a variant of the UI for mobile
devices. The structure remains the same but is
rendered for a different target device. In addition it
does not offer the possibility to book an open-yaw-
flight to reduce the complexity of the application.

These examples show the non-trivial nature of
UIs, including dynamic behaviour that is not
inferable from simple data models: additional
information is needed (e.g., rules for showing
additional questions when input changes).
Furthermore, the structure presented to the user for
input differs from the structure of the actual request
required by the backend service.

The goal of the presented approach is to provide
a sharable way for describing UIs in a technology-
agnostic manner for the automatic derivation of UIs
for different contexts. Thus, the following
requirements have to be considered:

 Req.1: A UI description is required, addressing
the complexity of non-trivial UIs. It needs to
contain all information about the data to be
gathered and for the automatic generation of UI
variants for different technologies and
plattforms.

 Req.2: Information has to be provided, allowing
the mapping of entered data to instances of the
target ontology required by consuming services.

 Req.3: To achieve sharable UI descriptions, a
non-proprietary description is required that con-

@prefix : <http://mimesis.solutions/bookers/flightbooking/individuals#> .
@prefix owl: ... ,rdf: ..., xml:..., xsd, ..., rdfs:...
@prefix fbo: <http://mimesis.solutions/bookers/flightbooking/v1#> .
@prefix foaf: <http://xmlns.com/foaf/0.1#> .
@base <http://mimesis.solutions/bookers/flightbooking/individuals> .
 <http://mimesis.solutions/bookers/flightbooking/individuals>
 rdf:type owl:Ontology .

:flightbookingrequest_i1474371413428
 rdf:type <fbo:FlightBookingRequest> , owl:NamedIndividual ;
 <fbo:childtickets> "1"^^<xmls:number> ;
 <fbo:adulttickets> "2"^^<xmls:number> ;
 <fbo:customerinfo> :customerinfo_i1474371413428 ;
 <fbo:flight> :flight_i1474371413428 .

:flight_i1474371413428 rdf:type <Flight> ,owl:NamedIndividual ;
 <fbo:returndate> "2016‐09‐20T22:00:00.000Z"^^<xmls:date> ;
 <fbo:startdate> "2016‐11‐09T23:00:00.000Z"^^<xmls:date> ;
 <fbo:fromdestination> "HAM"^^<xmls:string> ;
 <fbo:todestination> "STR"^^<xmls:string>;
 <fbo:openyawstartdate> "2016‐11‐25T23:00:00.000Z"^^<xmls:date> ;
 <fbo:openyawtodestination> "HAM"^^<xmls:string> ;
 <fbo:openyawfromdestination> "MUC"^^<xmls:string> .

:customerinfo_i1474371413428 rdf:type <Customerinfo> , ... ;
 <foaf:givenName> "Max"^^<xmls:string> ;
 <foaf:familyName> "Mustermann"^^<xmls:string> ;
 <foaf:gender> "male"^^<xmls:string> ;
 <foaf:email> "max.mustermann@onemail.com"^^<xmls:string> ;
 <fbo:billingaddress> :billingaddress_i1474371413428 .

:billingaddress_i1474371413428 rdf:type <fbo:BillingAddress> , ... ;
 <foaf:buildingNo> "178"^^<xmls:string> ;
 <foaf:zip> "70178"^^<xmls:string> ;
 <foaf:street> "Reinsburgstraße"^^<xmls:string> ;
 <foaf:city> "Stuttgart"^^<xmls:string> ;
 <foaf:country> "germany"^^<xmls:string> .

Towards Sharable Application Ontologies for the Automatic Generation of UIs for Dialog based Linked Data Applications

67

tains a minimum set of artefacts to be shared.

 Req.4: A process for (a) building final UIs and
(b) for inferring instance data from user input
that can be processed by (arbitrary) linked-data
driven backend services.

3 PROPOSED SOLUTION

To meet the above requirements, we propose a
single, declarative, data-centric application
description, which incorporates the required
information (1) to derive non-trivial UIs and (2) for
the mapping of input data to target ontology
instances (cf. Req.1, Req.2). To be applicable to
multiple contexts, a UI technology-agnostic model is
used, which is based on the data to be processed by
the application. Here we base on previous work on
data-centric UI description models proposed in
(Hitz, 2016). This approach is applied to ontological
concepts (Section 4.1) and extended to contain
additional data, required for the mapping of input
data onto target instances (Section 5).

To meet requirement Req.3, our solution uses
RDF/OWL (Hitzler, 2009) ontologies. RDF/OWL is
used, as it is a well understood, widely adapted
technology, already applied to different contexts and
for which tooling is available (e.g. reasoners, APIs).
The result is a sharable Application Ontology (AO)
containing the required information.

Fig. 2 shows a solution scenario for the use of
the proposed Application Ontology in a linked data
environment. The central elements are the Target
Ontology (TO) and the corresponding Application
Ontologies (AO) - both sharable between multiple
client applications and backend services. The TO
defines the semantics of possible input data for a
business process. The AOs define variants of the
user data to be gathered as outlined above. Fig. 2
shows the process for generating UIs based on the
AO and the TO instance based on the input data
(adressing Req.4).

A generic Client Application selects an AO ❶

and generates the final UI to be displayed, using a
User Interface Transformation based on the UI-
related information available in the AO ❷. The
resulting UI is integrated into the UI of the client
(e.g., as a mesh-up component). It is presented to the
user for input, based on the UI-related information
of the AO (structure, dynamics, etc.).

When the user has entered data, it (i.e., an
instance of the AO) is sent to a Target Instance
Transformation, which exploits the mapping-related
information available in the AO to generate an

instance of the TO ❸. Since the TO instance is
understood by the linked data service in the backend,
it is can be used as input for the business process.

The approach has benefits for the automated
generation of UIs for linked data applications:

Figure 2: Solution scenario architecture.

 It uses a sharable artefact that allows generating
UIs, that can be integrated into generic linked
data applications

 The generated UIs are able to produce output for
arbitrary linked data services by incorporating
mapping rules for arbitrary target ontologies

 It uses a single, self-contained artefact to be
easily shared and integrated into arbitrary
applications

The following sections focus first on the information
needed for UI derivation and its ontological
description, then on the enhancement of that model
regarding information needed to derive a target
instance from user input. Finally, we outline the
processes for UI derivation and target ontology
instance generation.

4 APPLICATION ONTOLOGIES
FOR UI DERIVATION

The proposed Application Ontology is partly based
on results of previous work of the mimesis project
(Hitz, 2016). The approach uses a model of the data
processed by the application as foundation, which is
enhanced by additional information regarding its
semantics. The following sections summarize this
information and show its application to an ontologi-
cal application description.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

68

4.1 Information Needs for Automatic
UI Generation

To derive the information required for generating
UIs, a set of interaction patterns was identified by
analysing existing, frequently used ‘real-life’ appli-
cations along with an analysis of related work. Fol-
lowing, the data necessary to build UIs for these
patterns was extracted. The summarized result is
grouped into two categories (Type related & Struc-
tural Information / Behavioural Information). It is
detailed in Table 1 along with the usage of the in-
formation within a UI derivation process.

Type related and Structural Information (I1-I4)
describes data elements (i.e., types and type re-
strictions like ranges or allowed values), their struc-
ture (i.e., grouping and hierarchical correlation),
and a meaningful temporal sequence of the ques-
tions.

Behavioural Information (I5-I7) models dynamic
aspects of the UI at runtime. This includes condi-
tions about the existence / activation of elements /
groups bound to the content of other data elements
within the model, the indication for complex valida-
tions, operations triggered on changes of the input
data (reactions) or triggered by the user (actions).

Table 1: Information needs and usage for UIs (Hitz, 2016).

Ref Information Need Usage for UI Derivation

type related & structural information

(I1) type information for
a data element or
group (based on
XMLSchema)

selection of suitable input control
based on type restrictions (e.g.
presets and value ranges); provi‐
sion of type‐related validations

(I2) hierarchical group‐
ing of elements

grouping of questions into display
units; dependencies and hierar‐
chical inclusion of groups; deriva‐
tion of suitable navigation struc‐
tures (sequential, tree, ...).

(I3) temporal succession
of data‐ or group
elements

display order of groups and input
controls

(I4) semantic cohesion of
elements

arrangement of controls (e.g.
proximity of a zip code and city);
identification of possible break‐
points for pagination

behavioural information

(I5) existence and
activation conditions
for data and group
elements

show/hide or de‐/activate groups
and questions, triggered on change
of already entered data.

(I6) validation operations trigger (complex) validations
operations usually related to
already entered data

(I7) actions and reactions trigger operations on change of
already entered data (reaction) or
initiated by the user (action).

Based on the findings, a meta model can be cre-
ated that incorporates the identified information and
serves as a foundation to develop data descriptions
for interview applications. Fig. 3 shows this meta
model as UML diagram.

Figure 3: Meta-model in UML notation (Hitz, 2016).

A data description (DataDescription) consists of
a succession of data groups (DataGroup) that might
contain an ordered list of further groups or data
elements (DataItem). This constellation allows to
model the requested structural information regard-
ing cohesion, (hierarchical) grouping and temporal
sequence of the elements (I2, I3, I4). Groups and data
items are detailed by attributes / facets. E.g., type
information (I1) and existential and activation
conditions (I5) can be specified for each description
element in the model. Further facets are used to
specify the element more precisely in terms of data
related aspects, i.e., type restrictions that are usually
part of a type system like XML-Schema (I1). Table 2
summarizes the semantics of the facets for Data-
Groups and DataItems. In addition, each description
element might have associated validation-, reac-
tion- and action operations (I6, I7), which are com-
plemented by further facets like name of the opera-
tion, triggering events, and model elements required
for the execution of the operation (cf. Hitz, 2016).

Towards Sharable Application Ontologies for the Automatic Generation of UIs for Dialog based Linked Data Applications

69

Table 2: Facets for DataGroups and DataItems.

Facet Description Contents

DescriptionElement

name* unique name as identifier for the
element

[a‐zA‐Z0‐9]+

type type of the group or data item s. below

existsIf Condition for the existance of the group
or element. if it evaluates to true, the
data is relevant and presented

boolean
expression.
Referencing model
items.

activeIf Condition for the editability of the group
or element. if it evaluates to true, the
data is editable , else just displayed.

boolean
expression.
Referencing model
items.

DataGroup

type type of the group

cardinality possible cardinality of the group.
Defines, how often the group might be
repeated. (e.g.used to express, that a
person might have multiple addresses)

*: no limit
<n>: fixed value
<n>..<m>: range

DataItem

type type of the data item
simple datatypes: semantics according
XML‐Schema
custom datatypes e.g. domian or
context specific. implies additional
behavior (e.g. country specific validation
for a zip code).

simple datatype:
text, number,
boolean, date, float
custom datatype:
email, zipcode,
phone, licenseplate

+ restrictions additional type specific constraints
XMLSchema (e.g. min/maxInclusive)

additional facets
for datatypes

restrictedTo restriction of possible vaules Value ranges, e.g.
dog|cat|mouse

+ multiple allows multiple values to be selected true, false

required idndicates that the data is not optional true, false

initialValue initial value of the content Depending on type
and restrictions

The resulting model meets the requirements re-
garding the UI description (Req.1) as it permits a
single description, containing all information to
derive non-trivial UIs and, as it contains information
about relations to model elements, allows consisten-
cy verification of the modelled UI.

4.2 Mapping to Ontologies

To get a sharable model, the meta-model is applied
to RDF/OWL. The objective is to map the infor-
mation requirements (I1-I7) listed in Section 4.1
towards RDF/OWL and hence develop a sharable
Application Ontology. This is done by projecting
the elements contained in the meta-model onto
RDF/OWL elements.

Since ontologies in general are intended to de-
scribe entities, relationships, contained data elements
and additional facts, expressing most of the structur-
al information with RDF/OWL is straightforward:
DataGroups can be modelled as owl:Classes and
their hierarchical relations as owl:ObjectProperties.
DataItems are defined as owl:Data-typeProperties.

To illustrate the mapping, Listing 2 shows an ex-

Listing 2: Application Ontology (excerpt) in OWL/Turtle notation.

@prefix : <http://mimesis/bookers/flight/v1#> .
@prefix : <http://mimesis/bookers/flight/v1#> .
@prefix mdt: <http://mimesis /datatypes#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>. ...
@prefix ma: <http://mimesis/annotations/v1>
@prefix sa: <http://mimesis/linkeddata/v1>
@base <http://mimesis/bookers/flight/v1> .

(1) #### Classes :
:Flightbooking rdf:type owl:Class .
:Basictraveldata rdf:type owl:Class .
:Flightinfo rdf:type owl:Class .
:Customerinfo rdf:type owl:Class .
:Persons rdf:type owl:Class .
:Flight rdf:type owl:Class .
:Returnflight rdf:type owl:Class .
:Openjawflightinfo rdf:type owl:Class .
:Customer rdf:type owl:Class .
:Address rdf:type owl:Class .
...

(2) #### Object Properties:
:Flightbooking.basictraveldata
 rdf:type owl:ObjectProperty ;
 rdfs:range :Basictraveldata ;
 rdfs:domain :Fligh tbooking .
: Flightbooking.flightinfo
 rdf:type owl:ObjectProperty ;
 rdfs:domain :Flightbooking ;
 rdfs:range :Flightinfo .
:Flightbooking.customerinfo
 rdf:type owl:ObjectProperty ;
 rdfs:range :Customerinfo ;
 rdfs:domain :Flightbooking .

:Basictraveldata.persons
 rdf:type owl:ObjectProperty ;
 rdfs:domain :Basictraveldata ;
 rdfs:range :Persons .
:Flightinfo.flight rdf:type owl:ObjectProperty ;
 rdfs:range :Flight ;
 rdfs:domain :Flightinfo .
:Flightinfo.returnflight
 rdf:type owl:ObjectProperty ;
 rdfs:domain :Flightinfo ;
 rdfs:range :Returnflight .
:Returnflight.openjawflightinfo
 rdf:type owl:ObjectProperty ;
 rdfs:range :Openjawflightinfo ;
 rdfs:domain :Returnflight

(3) #### Data Properties
:Flight.fromdestination
 rdf:type owl:DatatypeProperty ;
 rdfs:domain :Flight ;
 rdfs:range xsd:string .
:Flight.todestination rdf:type owl:DatatypeP...;
 rdfs:domain :Flight ;
 rdfs:range xsd:string .
:Flight.startdate rdf:type owl:DatatypeProperty ;
 rdfs:domain :Flight ;
 rdfs:range xsd:date .
:Flight.returnflight rdf:type owl: DatatypeProp...;
 rdfs:domain :Flight ;
 rdfs:range xsd:boolean .
:Returnflight.returndate rdf:type owl:Datat...;
 rdfs:domain :Returnflight ;
 rdfs:range xsd:date .
...

 (4) #### UI Annotations
:Flightinfo.flight
 ma:sequence "1" ;
:Flight.startdate
 ma:sequence "1" ;
 ma:type "date" ;
:Flight.fromdestination
 ma:sequence "2" ;
 ma:restrictedTo "flightbooking
 .getDepartureAirports()" ;
 ma:type "text" ;
:Flight.todestination
 ma:restrictedTo " " ;
 ma:sequence "3" ;
 ma:activeIf "fromdestination.length0" ;
 ma:reactions "fromdestination:flightbooking
 .changeDestinations(fromdestination,
 $todestination)" ;
 ma:type "text" ;
:Flightinfo.returnflight
 ma:existsIf "(returnflight == true)" ;
 ma:sequence "2" .
:Flight.returnflight
 ma:sequence "4" ;
 ma:type "boolean" ;
 ma:initialValue "true" .
:Returnflight.returndate
 ma:sequence "1" ;
 ma:type "date" ;
:Returnflight.openjawflightinfo
 ma:existsIf "(openjawflight == true)" ;
 ma:sequence "3" .

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

70

crept of the Application Ontology for the flight
booking example introduced in Section 2. The Clas-
ses section (Listing 2, (1)) declares the DataGroups
(e.g., Flightbooking, Flightinfo, CustomerInfo) as
part of the application ontology (i.e.,
<http://…bookers/flight/v1#>). Examples for relations
appear in the Object Properties section (e.g., Flight-
info as an object property of Flightbooking with
range flightinfo). Contained DataItems appear in the
Data Properties section (Listing 2, (3)) with infor-
mation to which class they belong to, along with
basic type information (e.g., exemplary data associ-
ated with a Flight and ReturnFlight). Using these
basic RDF/OWL concepts, the structural infor-
mation of I2 and I4 and partially I1 are covered.

However, not all of the identified information
can be expressed with standard RDF/OWL means.
Since ontologies are intended for representing facts,
they do not contain information such as the sequence
of data (I3), existential conditions (I5) or functional
aspects (I6, I7). To the best of our knowledge,
RDF/OWL does neither include a concept for the
description of operations nor for declaratively mod-
elling conditions / references based on instance data.
To express this information, we use the OWL anno-
tation concept as applied in (Khushraj et al., 2005)
and (Gaulke et al., 2015) to produce a profiled on-
tology. This allows incorporating the information
declaratively and leads to an ontology, that is (1)
still covered by basic RDF/OWL (and thus can be
used for standard reasoning) yet (2) exposes the
additional information for reasoners (e.g., UI genera-
tors) that understand the specific profile.

Table 3: Additional annotations.

annotation content

type related & structural information

:sequence Number ‐ position of the element in the flow of
questions.

I3

:type Typeinformation for a group or element. I1

:<constraint> typerelated constraints ‐> XMLSchema , e.g.
:restrictedTo, :initialValue, :max, :min I1

behavioral information

:existIf Conditional expression
References data within the hierarchy using path
expressions at runtime for an instance.

I5

:activeIf Conditional expression
References data within the hierarchy using path
expressions at runtime for an instance.

I5

:validations
:reactTo
:actions

Definition of validation, reaction and action
operations
Validations syntax:
<trigger>:<operation>(<parameter >*)
Ractions syntax:
<element>:<operation>(<parameters>*)
Action syntax:
<type>:<trigger>:<operation>(<parameter>*)

I6
I7

Table 3 lists the used annotations of the proposed
profile along with their mapping to the information
needs. As an example, Listing 2 (4) shows annota-
tions for type, sequence, existence and reactions
applied to elements of the sample ontology.

The result is an ontological description of the UI-
specific aspects of the application. It is sharable as
an RDF/OWL ontology and thus meets requirements
Req.1 and Req.3. The mapping to RDF/OWL leads
to an ontological description for dialog-based appli-
cation UIs. It incorporates all information contained
in the meta model of Section 4.1 so that UIs can be
generated (cf. Section 6 and 7). The resulting UI is
able to collect user input and provide it for further
processing (i.e., as an instance of the AO).

Nevertheless, the approach has limitations re-
garding its universality. The consequence of using a
profiled ontology with proprietary annotations is that
a reasoner is required that is aware of the profile.
The information is not interpretable by generic rea-
soners.

5 LINKING INSTANCE DATA TO
TARGET ONTOLOGIES

To this point, the model does not contain infor-
mation about how to provide the user input conform-
ing the target ontology, understood by a linked data
service. This section shows, how the data entered in
the UI can be prepared for further processing.

When the user enters data, he actually builds an
instance of the AO (Application Ontology instance,
AOI). To produce a Target Ontology instance (TOI),
a transformation from an AOI to a TOI is required.
The main task is to build the required structure for
the TOI and map data elements of the AOI into this
structure. For the presented AOI, groups and data
elements are related to elements of the TOI -
although they might appear in a different structure.
DataGroups are related to objects in the target
ontology and DataItems to data properties of
specific object instances of the TO.

Fig. 4 shows this for the flight booking example.
It shows that the flightbooking instance of the AOI is

associated with the :flightbookingrequest of the TOI
- as is the flight to the :flight instance. Flight
information as the startdate, from- and todestination
need to be mapped as data properties of the :flight
instance. The returndate and additional open-yaw-
flight information maps into the :flight instance,
despite being part of a different DataGroup of the
AOI (an example for structural differences between
AO and TO).

Towards Sharable Application Ontologies for the Automatic Generation of UIs for Dialog based Linked Data Applications

71

Fig. 4 shows as well the information needed on
the TOI side: to represent an object instance, its type
needs to be known (e.g., rdf:type Flight for the
:flight object instance). For a data property, its
property name, type and the instance value is needed
(cf. Listing 1, Section 2).

Since a requirement (Req.2) for the proposed
Application Ontology is to contain all information to
generate a TOI based on collected instance data, the
mapping information needs to be integrated into the
AO. To express this information, we use the OWL
annotation concept as already applied in Section 4
for additional data semantics. Hence a (new) profile
for expressing the linked data context is added for
the AO.

The profile annotations used for that purpose
within the AO are summarized in Table 4. For each
DataGroup in the AO, that corresponds to an object
instance in the TOI, an instance name (e.g. :flight)
and the type needs to be specified. If the object is
associated with another object (e.g. :flight as part of
:flightbookingrequest, Fig. 4), information about the
parent instance and the propertyname within that
object needs to be supplied. For a DataItem, its type
and propertyname is needed (e.g. <fbo:startdate>
with type <xmls:date> for the departuredate of the
flight, cf. Fig. 4) along with the instance, the
dataproperty is associated with (e.g. startdate as part
of :flight). Listing 3 shows the annotations for the
flight example.

Figure 4: Mapping AOI data to TOI.

Given an AOI and the AO, the TOI can now be
generated by tarversing the AOI tree nodes:

If passing a GroupItem node with annotated TO
information, an RDF triple for an instance is created
exploting the DataGroup annotations (cf. Table 4,

:swIndividual, :swClass). If there is a relation to
another instance, an ObjectProperty triple is
generated to refelct the relation (:swForIndividual,
:swProperty). If passing a DataItem node, a RDF
triple for a DataProperty is created, using (a) the
type, name and relation anntoations and (b) the
instance data entered by the user for the
corresponding field in the AOI.

Table 4: Linked data profile annotations.

Annotation Description

DataGroup/ObjectProperty annotations

:swIndividual name of the instance to be generated

:swClass object Type/Class of the group in target ontology

:swForIndividual* name of the instance, this item is associated with

:swProperty* object property name, this item has in the
associated instance

* = for nested object properties only

DataItem/DataProperty annotations

:swType type of the data property in the target ontology

:swForIndividual name of the instance this data item is associated
with

:swProperty data property name, this item has in the
associated instance

Listing 3: Linked Data Annotations.

:Flightbooking.flightinfo
 sa:swClass "fbo:FlightBookingRequest" ;
 sa:swIndividual "flightbookingrequest" .
:Flightinfo.flight
 sa:swClass "fbo:Flight" ;
 sa:swProperty "fbo:flight" ;
 sa:swIndividual "flight" ;
 sa:swForIndividual "flightbookingrequest" .
 :Flight.startdate
 sa:swProperty "fbo:startdate" ;
 sa:swForIndividual "flight" ;
 sa:swType "xmls:date" .
 :Flight.fromdestination
 sa:swProperty "fbo:fromdestination" ;
 sa:swForIndividual "flight" ;
 sa:swType "xmls:string" .
 :Flight.todestination

 :Returnflight.returndate
 sa:swProperty "fbo:returndate" ;
 sa:swForIndividual "flight" ;
 sa:swType "xmls:date" .
:Openjawflightinfo.openyawfromdestination
 sa:swProperty "fbo:openyawfromdestination" ;
 sa:swForIndividual "flight" ;
 sa:swType "xmls:string" .
:Openjawflightinfo.departuredate
 sa:swProperty "fbo:openyawstartdate" ;
 sa:swForIndividual "flight" ;
 sa:swType "xmls:date" .
... .

This approach allows the automatic generation of
a suitable TOI from an AOI based on information
contained in the AO and thus meets Req.2 and
Req.3.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

72

Our approach uses a simplified method for
mapping AO instance data to the TOI, allowing only
a unidirectional mapping of the data onto the TOI.
This restricts the contained data to the usecase we
focus on, but does not allow mapping back from
TOI to an AOI (for example, this could be used to
preset data). There exists research on bidirectional
tree transformations (e.g. Foster et al., 2005), which
can be applied to extend the proposed solution in
future work. Additionally, since a profiled ontology
is used, the restrictions discussed in Section 4 also
apply here.

6 GENERATING UI- AND
TARGET ONTOLOGY
INSTANCE

As outlined in Section 3, the two steps are the User
Interface Transformation and the Target Instance
Transformation building a Target Ontology instance
when user input is ready. Fig. 5 summarizes the
steps needed for the overall solution.

To generate a UI based on the AO, the approach
presented by mimesis (Hitz, 2016) is used. It is based
on the concepts of the CAMELEON framework
(Calvary et al., 2002).

As shown in Table 1, the information contained
in the AO is used for the derivation of UIs. Fig. 5
(on the left) outlines the different steps. The process
starts with an instance of the data-centric core mod-
el, which is built from the information contained in
the AO. The core model describes the processed data
of the application according to the structure and
properties presented in section 4.

Figure 5: Derivation process.

Step 1: the core model is transformed to an ab-
stract UI (AUI) using information about the context
of use to concretize the information contained in the

data-centric model. This step is crucial to generate
usable UIs from a solely data-centric model that
intentionally omits technical details. This includes
enrichment with labels, explaining texts and help
information (depending on the language), the map-
ping of data types to concrete types of the AUI (e.g.,
mapping zip to a text field restricted to 5 digits for
Germany) and abstract UI input elements. The in-
formation needed here is derived from I1, I2, I3 and I4
(cf. Table 1)

Step 2: derives a concrete UI from the AUI de-
scription by incorporating the device context for
which the UI is intended. It maps fields to pages by
using information about device restrictions and ex-
ploits cohesion information contained in the data-
centric model. The latter indicates how a flow of
questions may be split up and positioned on pages
for different device categories. The information
needed here is derived from I2 and I4.

Step 3: Depending on the technological context
the final UI is derived by generating now concrete
UI Widgets for the abstract controls of the AUI and
by implementing the functional aspects for the spe-
cific platform. This exploits the behavioural infor-
mation contained in the basic application model. The
information needed here is derived from I1, I5, I6 and
I7.

These steps lead to a final UI, which can be run
on a specific platform and presented to the user for
input. When the user finishes his input, an AOI is
available, based on the associated AO containing the
input data. That now needs to be mapped to an in-
stance of the TO. This was outlined already in Sec-
tion 5 – resulting in the last, deferred step of the
process.

Step 4: Traversal of the instance data tree within
the AOI and generation of a TOI based on the in-
stance mapping annotations contained in the AO.
The resulting data object can be consumed by a
linked data service following the target ontology.

7 VALIDATION

The following section focuses on the validation of
the stated objectives to show, that (1) ontologies can
be used to describe application UIs in a non-
proprietary way, which (2) can be used to produce
output conforming a target ontology and (3) are
sharable within generic linked data applications.

The validation was carried out in association
with a major German insurance company (Allianz
Deutschland) from which we got data for the evalua-
tion and which already uses parts of our implemen-

Towards Sharable Application Ontologies for the Automatic Generation of UIs for Dialog based Linked Data Applications

73

tation results in production environments (i.e., to
generate UIs of electronic risk acceptance check
applications for different products on customer and
agent portals).

The company provided a set of typical ‘real-life’
dialog-based applications that were used during the
analysis phase and the evaluation of the implementa-
tion. From this set, relevant applications were select-
ed that cover the interaction patterns identified dur-
ing analysis and to demonstrate the usefulness of the
automated process and the Application Ontology
developed in this paper.

To allow a deeper investigation, the following
DOI (https://doi.org/10.13140/RG.2.2.32129.45929)
is provided that lists sample resources for the
flightbooking application used throughout this pa-
per. It presents a working example of application
variants and the complete application models.

Basic Setting and Preparation. We chose the ar-
chitecture and building blocks outlined in Section 3
(cf. Fig. 2) and implemented the required compo-
nents for that setting to be used in our validation
steps.

First, the User Interface Transformation compo-
nent was implemented as outlined in Section 6,
which resulted in a UI Transformation Service (ex-
posed as a web service). The implementation is
based on available components from previous work
(Hitz, 2016). We reused the transformation and – for
a comparative evaluation – an import module for a
proprietary application DSL (Domain Specific Lan-
guage). The UI Transformation Service transforms a
data-centric core model to a final UI for different
platforms. It focuses on web-based dialog applica-
tions (using HTML, JavaScript, CSS) for different
device categories (mobile, desktop).

As a second step, an import module was imple-
mented, reading the proposed Application Ontology
and converting it into the core data model of the
Transformation Service.

Third, the Target Instance Transformation (cf.
Fig. 2) was implemented as a web service. It con-
sumes an AO and instance data as input, producing a
TOI based on the contained data as outlined in Sec-
tion 5.

Applicability of Ontologies. To validate the ap-
plicability of the ontological approach, a compara-
tive evaluation was chosen based on the implemen-
tation of the UI Transformation Service. Fig. 6
shows the basic setting for the evaluation. The goal
is to demonstrate that the proposed ontology has the
same expressive power as the mimesis DSL, which
was already evaluated in previous work. To achieve

this, the same applications were modelled using (1)
the mimesis DSL and (2) the Application Ontology.
Both were transformed to the core model of the
transformation service and the generated output was
compared.

Figure 6: Basic setting for comparison.

Results. The results show that both kinds of descrip-
tions can be mapped to the same core model and
bear the same expressive power. The implementa-
tion shows that the proposed approach for using
Application Ontologies to describe UIs leads to the
same results as the solution using the proprietary
mimesis DSL. While not being a formal proof, the
results indicate that the data-centric approach may
be applied to ontological descriptions of dialog ap-
plications. The evaluation showed as well, that the
DSL (as proprietary approach) was much easier to
use and less error prone than manually building AOs
from scratch. But since the expressive power of both
approaches is the same, it is possible to use the DSL
for modelling and automatically transform the model
into the proposed AO – preserving the benefits of
both approaches.

Sharable, Reusable Application Descriptions. For
the suitability of the proposed ontology as sharable,
reusable application descriptions for linked data
applications, we applied the approach to a concept
for Distributed Market Spaces working with generic
UIs for the specification of complex product re-
quests. This concept is already published in (Hitz,
Radonjic-Simic et al., 2016) and summarized here.
The objective is to show that Application Ontologies
can be (1) shared and used to generically build com-
posed UIs and (2) can produce linked data requests –
in this case to build a complex product request from
user input.

Fig. 7 shows the basic architecture of the demon-
strator. As generic user frontend a Complex Product
Builder (CPB) application was implemented, that
lets users search and select arbitrary Application
Ontologies (AO) as proposed in this paper (Fig. 7,
❶). These were drawn from a shared UI description
repository containing AOs for different product

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

74

components (e.g., booking a concert ticket or a
flight). The user-selected AOs are sent to the Trans-
formation Service (Fig. 7, ❷), which returns gener-
ated UIs for each AO. These were aggregated to a
final UI (Fig. 7, right). Since the UIs are generated
from the elements contained in the AO, the user
input relates to the corresponding ontology elements.
This allows building an instance model for each
presented AO containing the input data of the user
using an Ontology Mapper (Fig. 7, ❸). The result is
a set of ontology instances on which a reasoner can
build a complex product request, which is sent to the
Market Space for further processing (i.e. generating
a quote for the requested product components).

Results. Although the demonstrator is still a proof-
of-concept it shows that sharing application descrip-
tions is possible. In future work, AOs could be as-
sembled from arbitrary sources (e.g., topic-related
repositories for insurance, travel planning, etc.) and
UIs for arbitrary domains can be generated. In addi-
tion, it shows that target ontology instances can be
derived from user input data using the mapping
information contained in the AO.

Although the approach lead to satisfying results
and is easy to implement, we observed a drawback
regarding the user friendliness in modelling the
mapping for bigger AOs: hence the approach is
focused on the AO, the information of the TOI is
scattered all over the AO model and thus hard to
grasp and maintain. Future work might focus on
better tool support for this task or advanced mapping
concepts.

Figure 7: Generic UIs for complex product requests.

8 RELATED WORK

The research on the automatic generation of UIs
covers many contributions during the last years that
are based on model-driven concepts.

User Interface Description Languages (UIDL)
focus mainly on the description of concrete UIs in a
technology independent way. Examples are JavaFX
(Fedortsova, 2014), UIML (Abrams et al., 1999),
UsiXML (Limbourg, 2004) and XForms (W3C). The
basic idea is to model dialogs and forms by using
technology independent descriptions of in-/output
controls and relations between elements (e.g. visibil-
ity) within a concrete UI. Task-/conversation based
approaches describe applications by dialog flows
which are derived from task models – e.g. CAP3
(Van den Bergh et al., 2011), MARIA (Paterno et al.,
2009) and conversation based approaches e.g. (Popp
et al., 2009). They focus on a concrete model of the
dialog flows. To generate an application frontend,
the steps in a dialog flow are associated with tech-
nology independent UI descriptions displayed to the
user. Data-centric approaches can be found in
JANUS (Balzert te al., 1996) and Mecano (Puerta et
al., 1994) which use a domain model as starting
point for the derivation of UIs. While JANUS was
designed to only provide CRUD-like interfaces for
applications that work on a persisted domain model
that does not support much dynamics in the UI,
Mecano adds these aspects to its description.

Existing Ontology based approaches generally
rely on the concepts of the mentioned approaches
and use ontologies to represent the information
about concrete UIs. For instance, in analogy of
UIDL approaches, Liu et al. (2005) propose an on-
tology driven framework to describe UIs based on
concepts stored in a knowledge base. Khushraj et al.
(2005) uses web service descriptions to derive UI
descriptions based on a UI ontology, adding UI
related information to the concept descriptions (pro-
file). In analogy with task based approaches, Gaulke
et al. (2015) use a profiled domain model enriched
with UI related data to describe a UI and associate it
with an ontology driven task model.

Dissociation: A main goal of the proposed ap-
proach was to minimize the number of needed arte-
facts and to use a sharable representation that can be
reused in different contexts. The models of the
aforementioned approaches usually do not contain
enough semantical information for reasoning that
could be used for deriving UI variants. The UIs are
manually modelled using a large amount of arte-
facts. This opens a gap in automating the process for
building UIs. In addition, the produced artefacts are
usually proprietary and UI-specific.

The solution proposed in this paper is based on
the application’s processed data and enriches its
model by additional semantics. This leads to a sin-
gle, central description for the application that

Towards Sharable Application Ontologies for the Automatic Generation of UIs for Dialog based Linked Data Applications

75

serves as a knowledge base for the automatic
derivation of UI variants. The data-centric ap-
proach allows the reuse of the model in different
contexts and - by using a non-proprietary representa-
tion for the model - the sharing and integration into
different environments.

9 CONCLUSIONS

In this paper a model-driven approach for the auto-
matic generation of UIs for dialog-based linked data
applications is presented. It is based on an UI-
agnostic, ontological model of the processed appli-
cation data enhanced by type-related, structural and
behavioural information to generate non-trivial UIs.
Additionally, it contains information on how input
data maps to linked data input of target business
services – enabling the generated UIs to be used in a
linked data services ecosystem.

In the course of the paper, the information needs
are identified and a meta-model is derived from
which non-trivial UIs can be inferred. The infor-
mation needs are mapped to an ontological descrip-
tion, relying on RDF/OWL constructs to get a non-
proprietary representation. The mapping of input
data to target ontology instances is shown and the
process to derive UIs and target data is outlined.
Finally, the evaluation is presented which provides
an implementation of the generation process for UIs
from an Application Ontology.

The results of the evaluation indicate the feasibil-
ity of the proposed Application Ontology to be used
for generating UIs for dialog based linked data ap-
plications. Since the number of artefacts is reduced
to a single, UI-agnostic application model, contain-
ing information for UI generation and produce an
outcome understood by linked data services, the
manual step for building UIs can be eliminated.
Using a universal representation as RDF/OWL al-
lows the application model to be sharable and the
contained semantics can be exploited using standard
tools for reasoning on the model and instances.

The approach is intentionally limited to dialog
based, interview-like applications, that are very
important and frequently used in enterprise infor-
mation systems (e.g., in the insurance domain).
Since a limited set of applications was used for anal-
ysis, we do not claim completeness of the identified
interaction patterns. The practical use of the ap-
proach might bring forth additional interaction pat-
terns, extending the basic information set in future.
Regarding the proposed use of ontologies, the evalu-
ation strongly indicates the usefulness for UI deriva-

tion – though it uses proprietary annotations and
thus restricting its universality. Future work might
concentrate on finding more general ways for incor-
porating the information.

REFERENCES

Abrams, M. et al., 1999. UIML: An appliance-independent
XML user interface language. In WWW ’99 Proceed-
ings of the eighth international conference on World
Wide Web. pp. 1695–1708.

Balzert, H., Hofmann, F. & Kruschinski, V., 1996. The
JANUS Application Development Environment -
Generating More than the User Interface. In Computer
Aided Design of User Interfaces, Vol. 96. pp. 183–
206.

Calvary, G. et al., 2002. The CAMELEON Reference
Framework.

Coutaz, J., 2010. User interface plasticity: model driven
engineering to the limit! In EICS ’10 Proceedings of
the 2nd ACM SIGCHI symposium on Engineering in-
teractive computing systems. pp. 1–8.

Fedortsova, I. & Brown, G., 2014. JavaFX Mastering
FXML, Release 8. JavaFX Documentation. Available
at: http://docs.oracle.com/javase/8/javafx/fxml-
tutorial/preface.htm.

Foster, J., Greenwald, M. & Moore, J., 2005. Combinators
for bi-directional tree transformations: a linguistic ap-
proach to the view update problem. ACM SIGPLAN, 3,
pp.1–64.

Gaulke, W. & Ziegler, J., 2015. Using profiled ontologies
to leverage model driven user interface generation.
Proceedings of the 7th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems - EICS
’15, pp.254–259.

Hitz, M., 2016. mimesis: Ein datenzentrierter Ansatz zur
Modellierung von Varianten für Interview-
Anwendungen. In V. Nissen et al., eds. Proceedings -
Multikonferenz Wirtschaftsinformatik (MKWI) 2016.
pp. 1155–1165.

Hitz, M. et al., 2016. Generic UIs for requesting complex
products within Distributed Market Spaces in the In-
ternet of Everything. In F. Buccafurri, ed. Proceedings
of CD-ARES 2016, LNCS 9817. F. Buccafurri et al.

Hitzler, P. et al., 2009. OWL 2 Web Ontology Language
Primer. W3.org. Available at: http://www.w3.org/TR/
2009 /REC-owl2-primer-20091027/.

Khushraj, D. & Lassila, O., 2005. Ontological approach to
generating personalized user interfaces for web ser-
vices. The Semantic Web–ISWC 2005, pp.916–927.

Kraus, A., Knapp, A. & Koch, N., 2003. Model-Driven
Generation of Web Applications in UWE. Proc. 3rd
Int. Wsh. Model-Driven Web Engineering
(MDWE'07). CEUR-WS 261

Limbourg, Q., 2004. USIXML: A User Interface Descrip-
tion Language Supporting Multiple Levels of Inde-
pendence. In M. Matera & S. Comai, eds. ICWE
Workshops. Rinton Press, pp. 325–338.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

76

Liu, B., Chen, H. & He, W., 2005. Deriving user interface
from ontologies: A model-based approach. Proceed-
ings - International Conference on Tools with Artifi-
cial Intelligence, ICTAI, 2005, pp.254–259.

Meixner, G., Paternò, F. & Vanderdonckt, J., 2011. Past,
Present, and Future of Model-Based User Interface
Development. i-com, (3), pp.2–11.

Paterno, F., Santoro, C. & Spano, L.D., 2009. Maria: A
Universal, Declarative, Multiple Abstraction-Level
Language for Service-Oriented Applications in Ubiq-
uitous Environment. ACM Transactions on Computer-
Human Interaction, 16(4).

Pfisterer, D., Radonjic-Simic, M. & Reichwald, J., 2016.
Business Model Design and Architecture for the Inter-
net of Everything. Journal of Sensor and Actuator
Networks, 5(2), p.7.

Popp, R. et al., 2009. Automatic generation of the behav-
ior of a user interface from a high-level discourse
model. In Proceedings of the 42nd Annual Hawaii In-
ternational Conference on System Sciences, HICSS.

Puerta, A.R., Eriksson, H., Gennari, J.H., Musen,
M.A.,1994. Beyond data models for automated user
interface generation. Proceedings British HCI’94.

Van den Bergh, J., Luyten, K. & Coninx, K., 2011. CAP3:
Context-Sensitive Abstract User Interface Specifica-
tion. In Proceedings of the 3rd ACM SIGCHI sympo-
sium on Engineering interactive computing systems -
EICS ’11. pp. 31–40.

Towards Sharable Application Ontologies for the Automatic Generation of UIs for Dialog based Linked Data Applications

77

