Image Segmentation using Local Probabilistic Atlases Coupled with Topological Information

Gaetan Galisot, Thierry Brouard, Jean-Yves Ramel, Elodie Chaillou

Abstract

Atlas-based segmentation is a widely used method for Magnetic Resonance Imaging (MRI) segmentation. It is also a very efficient method for the automatic segmentation of brain structures. In this paper, we propose a more adaptive and interactive atlas-based method. The proposed model allows to combine several local probabilistic atlases with a topological graph. Local atlases can provide more precise information about the structure’s shape and the spatial relationships between each of these atlases are learned and stored inside a graph representation. In this way, local registrations need less computational time and image segmentation can be guided by the user in an incremental way. Pixel classification is achieved with the help of a hidden Markov random field that is able to integrate the a priori information with the intensities coming from different modalities. The proposed method was tested on the OASIS dataset, used in the MICCAI’12 challenge for multi-atlas labeling.

References

  1. Al-Shaikhli, S. D. S., Yang, M. Y., and Rosenhahn, B. (2014). Multi-region labeling and segmentation using a graph topology prior and atlas information in brain images. Computerized Medical Imaging and Graphics, 38(8):725-734.
  2. Avants, B. B., Yushkevich, P., Pluta, J., Minkoff, D., Korczykowski, M., Detre, J., and Gee, J. C. (2010). The optimal template effect in hippocampus studies of diseased populations. NeuroImage, 49(3):2457-2466.
  3. Bloch, I., Géraud, T., and Maˆitre, H. (2003). Representation and fusion of heterogeneous fuzzy information in the 3D space for model-based structural recognition - Application to 3D brain imaging. Artificial Intelligence, 148(1-2):141-175.
  4. Cabezas, M., Oliver, A., Llad ó, X., Freixenet, J., and Bach Cuadra, M. (2011). A review of atlas-based segmentation for magnetic resonance brain images. Comput. Methods Prog. Biomed., 104(3):e158-e177.
  5. Colliot, O., Camara, O., and Bloch, I. (2006). Integration of fuzzy spatial relations in deformable modelsApplication to brain MRI segmentation. Pattern Recognition, 39(8):1401-1414.
  6. Dolz, J., Massoptier, L., and Vermandel, M. (2014). Segmentation algorithms of subcortical brain structures on MRI : a review. Journal of Neuroimage, page 200/212.
  7. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., and Dale, A. M. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3):341- 355.
  8. Fornefett, M., Rohr, K., and Stiehl, H. (2001). Radial basis functions with compact support for elastic registration of medical images. Image and Vision Computing, 19(1-2):87-96.
  9. Nempont, O., Atif, J., Angelini, E., and Bloch, I. (2008). Structure Segmentation and Recognition in Images Guided by Structural Constraint Propagation. European Conference on Artificial Intelligence ECAI, pages 621-625.
  10. Nyul, L. G., Udupa, J. K., and Zhang, X. (2000). New variants of a method of MRI scale standardization. IEEE Transactions on Medical Imaging, 19(2):143-150.
  11. Scherrer, B., Forbes, F., Garbay, C., and Dojat, M. (2009). Distributed Local MRF Models for Tissue and Structure Brain Segmentation. IEEE Transactions on Medical Imaging, 28(8):1278-1295.
  12. Shi, F., Yap, P.-T., Fan, Y., Gilmore, J. H., Lin, W., and Shen, D. (2010). Construction of multi-region-multireference atlases for neonatal brain MRI segmentation. NeuroImage, 51(2):684-93.
  13. van Rikxoort, E. M., Isgum, I., Arzhaeva, Y., Staring, M., Klein, S., Viergever, M. a., Pluim, J. P. W., and van Ginneken, B. (2010). Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus. Medical image analysis, 14(1):39-49.
  14. Wang, H. and Yushkevich, P. A. (2013). Groupwise segmentation with multi-atlas joint label fusion. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8149 LNCS(PART 1):711-718.
  15. Zhang, Y., Brady, M., and Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imag, 20(1):45-57.
Download


Paper Citation


in Harvard Style

Galisot G., Brouard T., Ramel J. and Chaillou E. (2017). Image Segmentation using Local Probabilistic Atlases Coupled with Topological Information . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-225-7, pages 501-508. DOI: 10.5220/0006130605010508


in Bibtex Style

@conference{visapp17,
author={Gaetan Galisot and Thierry Brouard and Jean-Yves Ramel and Elodie Chaillou},
title={Image Segmentation using Local Probabilistic Atlases Coupled with Topological Information},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={501-508},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006130605010508},
isbn={978-989-758-225-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)
TI - Image Segmentation using Local Probabilistic Atlases Coupled with Topological Information
SN - 978-989-758-225-7
AU - Galisot G.
AU - Brouard T.
AU - Ramel J.
AU - Chaillou E.
PY - 2017
SP - 501
EP - 508
DO - 10.5220/0006130605010508