Approaches and Challenges in the Visual-interactive Comparison of Human Motion Data

Jürgen Bernard, Anna Vögele, Reinhard Klein, Dieter Fellner


Many analysis goals involving human motion capture (MoCap) data require the comparison of motion patterns. Pioneer works in visual analytics recently recognized visual comparison as substantial for visual-interactive analysis. This work reflects the design space for visual-interactive systems facilitating the visual comparison of human MoCap data, and presents a taxonomy comprising three primary factors, following the general visual analytics process: algorithmic models, visualizations for motion comparison, and back propagation of user feedback. Based on a literature review, relevant visual comparison approaches are discussed. We outline remaining challenges and inspiring works on MoCap data, information visualization, and visual analytics.


  1. (2015). Time-series clustering-a decade review.
  2. Keim, D., Kohlhammer, J., Ellis, G., and Mansmann, F., editors (2010). Mastering the Information Age: Solving Problems with Visual Analytics. VisMaster,
  3. Keogh, E., Chu, S., Hart, D., and Pazzani, M. (2004). Segmenting time series: A survey and novel approach. Data mining in time series databases, 57:1-22.
  4. Keogh, E. and Kasetty, S. (2003). On the need for time series data mining benchmarks: A survey and empirical demonstration. Data Mining and Knowledge Discovery, 7(4):349-371.
  5. Kr üger, B. (2012). Synthesizing Human Motions. Dissertation, Universität Bonn.
  6. Kr üger, B., Tautges, J., Weber, A., and Zinke, A. (2010). Fast local and global similarity searches in large motion capture databases. In ACM SIGGRAPH/EG Symp. on Comp. Anim., pages 1-10. Eurographics.
  7. Kr üger, B., V ögele, A., Willig, T., Yao, A., Klein, R., and Weber, A. (2015). Efficient unsupervised temporal segmentation of motion data. arXiv preprint arXiv:1510.06595.
  8. Lew, M. S., Sebe, N., Djeraba, C., and Jain, R. (2006). Content-based multimedia information retrieval: State of the art and challenges. ACM Trans. Multimedia Comput. Commun. Appl., 2(1):1-19.
  9. Lin, J., Keogh, E., and Lonardi, S. (2005). Visualizing and discovering non-trivial patterns in large time series databases. Information Visualization, 4(2):61-82.
  10. Lin, J., Keogh, E., Lonardi, S., Lankford, J. P., and Nystrom, D. M. (2004). Visually mining and monitoring massive time series. In ACM SIGKDD Knowledge Discovery and Data Mining, pages 460-469. ACM.
  11. McLachlan, P., Munzner, T., Koutsofios, E., and North, S. (2008). Liverac: Interactive visual exploration of system management time-series data. In SIGCHI Conference on Human Factors in Computing Systems (CHI), pages 1483-1492. ACM.
  12. Min, J. and Chai, J. (2012). Motion graphs++: A compact generative model for semantic motion analysis and synthesis. ACM Trans. Graph., 31(6):153:1-153:12.
  13. Moeslund, T. B., Hilton, A., and Kr V. (2006). A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding, 104(2 - 3):90 - 126.
  14. M örchen, F. (2006). Time series knowledge mining. PhD thesis, University of Marburg.
  15. M üller, M. (2007). Information Retrieval for Music and Motion. Springer-Verlag New York, Inc.
  16. M üller, M. and R öder, T. (2006). Motion templates for automatic classification and retrieval of motion capture data. In ACM SIGGRAPH/EG Symposium on Computer Animation (SCA), pages 137-146. Eurographics.
  17. Payton, C. and Bartlett, R. (2007). Biomechanical evaluation of movement in sport and exercise: the British Assoc. of Sport and Exercise Sciences guide. Routledge.
  18. Peak, V. (2005). Vicon motion capture system.
  19. Ragan, E. D., Endert, A., Sanyal, J., and Chen, J. (2016). Characterizing provenance in visualization and data analysis: An organizational framework of provenance types and purposes. IEEE Trans. Vis. Comput. Graph., 22(1):31-40.
  20. Roetenberg, D., Luinge, H., and Slycke, P. (2009). Xsens mvn: full 6dof human motion tracking using miniature inertial sensors. Xsens Motion Technologies BV, Tech. Rep.
  21. Sakurai, Y., Matsubara, Y., and Faloutsos, C. (2015). Mining and forecasting of big time-series data. In ACM SIGMOD International Conference on Management of Data, pages 919-922. ACM.
  22. Schreck, T., Sharalieva, L., Wanner, F., Bernard, J., Ruppert, T., von Landesberger, T., and Bustos, B. (2012). Visual exploration of local interest points in sets of time series. In IEEE Conf. on Visual Analytics Science and Technology (VAST, Poster), pages 239-240.
  23. Tautges, J. (2012). Reconstruction of Human Motions Based on Low-Dimensional Control Signals. Dissertation, Universität Bonn.
  24. Tautges, J., Zinke, A., Kr üger, B., Baumann, J., Weber, A., Helten, T., M üller, M., Seidel, H.-P., and Eberhardt, B. (2011). Motion reconstruction using sparse accelerometer data. ACM Trans. Graph., 30(3):18:1- 18:12.
  25. Van Wijk, J. J. and Van Selow, E. R. (1999). Cluster and calendar based visualization of time series data. In IEEE Symposium on Information Visualization (InfoVis, pages 4-. IEEE Computer Society.
  26. V ögele, A., Kr üger, B., and Klein, R. (2014). Efficient unsupervised temporal segmentation of human motion. In ACM SIGGRAPH/EG Symposium on Computer Animation (SCA). Eurographics.
  27. Wang, L., Hu, W., and Tan, T. (2003). Recent developments in human motion analysis. Pattern recognition, 36(3):585-601.
  28. Wang, Q., Kurillo, G., Ofli, F., and Bajcsy, R. (2015). Unsupervised temporal segmentation of repetitive human actions based on kinematic modeling and frequency analysis. In International Conference on 3D Vision (3DV), pages 562-570. IEEE.
  29. Warren Liao, T. (2005). Clustering of time series data-a survey. Pattern Recogn., 38(11):1857-1874.
  30. Wilhelm, N., Vögele, A., Zsoldos, R., Licka, T., Kr üger, B., and Bernard, J. (2015). Furyexplorer: visualinteractive exploration of horse motion capture data. In IS&T/SPIE Electronic Imaging, pages 93970F93970F.
  31. Zhang, Z. (2012). Microsoft kinect sensor and its effect. MultiMedia, IEEE, 19(2):4-10.
  32. Zhou, F., la Torre, F. D., and Hodgins, J. K. (2013). Hierarchical aligned cluster analysis for temporal clustering of human motion. IEEE Trans. on Pattern Analysis and Machine Intelligence, 35(3):582-596.
  33. Zhou, H. and Hu, H. (2008). Human motion tracking for rehabilitationa survey. Biomedical Signal Processing and Control, 3(1):1-18.

Paper Citation

in Harvard Style

Bernard J., Vögele A., Klein R. and Fellner D. (2017). Approaches and Challenges in the Visual-interactive Comparison of Human Motion Data . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017) ISBN 978-989-758-228-8, pages 217-224. DOI: 10.5220/0006127502170224

in Bibtex Style

author={Jürgen Bernard and Anna Vögele and Reinhard Klein and Dieter Fellner},
title={Approaches and Challenges in the Visual-interactive Comparison of Human Motion Data},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017)},

in EndNote Style

JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017)
TI - Approaches and Challenges in the Visual-interactive Comparison of Human Motion Data
SN - 978-989-758-228-8
AU - Bernard J.
AU - Vögele A.
AU - Klein R.
AU - Fellner D.
PY - 2017
SP - 217
EP - 224
DO - 10.5220/0006127502170224