Partially Coherent Linearly Polarized Sources with Inhomogeneous Azimuth

Juan Carlos González de Sande, Rosario Martínez-Herrero, Gemma Piquero, David Maluenda

Abstract

A new model of physically realizable electromagnetic source is proposed. The source is partially coherent and non-uniformly totally polarized. The coherence and polarization characteristics of this new source are analyzed. The spatial coherence area of the source can be easily modified at will. The state of polarization is linear across the transverse plane of the source with an azimuth that varies from point to point in a different way depending on the selected values of the parameters that define the source.

References

  1. Ambrosini, D., Bagini, V., Gori, F., and Santarsiero, M. (1994). Twisted Gaussian Schell-model beams: A superposition model. Journal of Modern Optics, 41(7):1391-1399.
  2. Borghi, R., Gori, F., Guattari, G., and Santarsiero, M. (2015). Twisted Schell-model beams with axial symmetry. Opt. Lett., 40(19):4504-4507.
  3. Born, M. and Wolf, E. (1980). Principles of Optics. Cambridge University Press, sixth (corrected) edition.
  4. Brown, T. G. and Zhan, Q. (2010). Focus issue: Unconventional polarization states of light. Opt. Express, 18(10):10775-10776.
  5. de Sande, J. C. G., Santarsiero, M., Piquero, G., and Gori, F. (2012). Longitudinal polarization periodicity of unpolarized light passing through a double wedge depolarizer. Opt. Express, 20(25):27348-27360.
  6. Friberg, A. T. and Sudol, R. J. (1982). Propagation parameters of Gaussian Schell-model beams. Optics Communications, 41(6):383 - 387.
  7. Friberg, A. T. and Turunen, J. (1988). Imaging of Gaussian Schell-model sources. J. Opt. Soc. Am. A, 5(5):713- 720.
  8. Goldstein, D. H. (2003). Polarized Light. Marcel Dekker, Inc., second (revised and expanded) edition.
  9. Gori, F. (2001). Polarization basis for vortex beams. J. Opt. Soc. Am. A, 18(7):1612-1617.
  10. Gori, F., Ramírez-S ánchez, V., Santarsiero, M., and Shirai, T. (2009). On genuine cross-spectral density matrices. Journal of Optics A: Pure and Applied Optics, 11(8):085706.
  11. Gori, F. and Santarsiero, M. (2007). Devising genuine spatial correlation functions. Opt. Lett., 32(24):3531- 3533.
  12. Gori, F., Santarsiero, M., and Borghi, R. (2007). Maximizing Young's fringe visibility through reversible optical transformations. Opt. Lett., 32(6):588-590.
  13. Gori, F., Santarsiero, M., Borghi, R., and Piquero, G. (2000). Use of the van Cittert-Zernike theorem for partially polarized sources. Opt. Lett., 25(17):1291- 1293.
  14. Gori, F., Santarsiero, M., Borghi, R., and Ramírez-S ánchez, V. (2008). Realizability condition for electromagnetic Schell-model sources. J. Opt. Soc. Am. A, 25(5):1016- 1021.
  15. Gori, F., Santarsiero, M., Borghi, R., and Vicalvi, S. (1998). Partially coherent sources with helicoidal modes. Journal of Modern Optics, 45(3):539-554.
  16. Gori, F., Santarsiero, M., Piquero, G., Borghi, R., Mondello, A., and Simon, R. (2001). Partially polarized Gaussian Schell-model beams. Journal of Optics A: Pure and Applied Optics, 3(1):1.
  17. Liang, C., Wang, F., Liu, X., Cai, Y., and Korotkova, O. (2014). Experimental generation of cosine-Gaussiancorrelated Schell-model beams with rectangular symmetry. Opt. Lett., 39(4):769-772.
  18. Maluenda, D., Juvells, I., Martínez-Herrero, R., and Carnicer, A. (2013). Reconfigurable beams with arbitrary polarization and shape distributions at a given plane. Opt. Express, 21(5):5432-5439.
  19. Martínez-Herrero, R., Mej ías, P., Piquero, G., and Ram írezSánchez, V. (2008). Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams. Optics Communications, 281(8):1976 - 1980.
  20. Martínez-Herrero, R. and Mej ías, P. M. (2007a). Maximum visibility under unitary transformations in twopinhole interference for electromagnetic fields. Opt. Lett., 32(11):1471-1473.
  21. Martínez-Herrero, R. and Mej ías, P. M. (2007b). Relation between degrees of coherence for electromagnetic fields. Opt. Lett., 32(11):1504-1506.
  22. Martínez-Herrero, R. and Mej ías, P. M. (2008). Propagation of light fields with radial or azimuthal polarization distribution at a transverse plane. Opt. Express, 16(12):9021-9033.
  23. Martínez-Herrero, R. and Mej ías, P. M. (2009). Elementary-field expansions of genuine cross-spectral density matrices. Opt. Lett., 34(15):2303-2305.
  24. Martínez-Herrero, R., Mej ías, P. M., and Gori, F. (2009a). Genuine cross-spectral densities and pseudo-modal expansions. Opt. Lett., 34(9):1399-1401.
  25. Martínez-Herrero, R., Mej ías, P. M., and Piquero, G. (2009b). Characterization of Partially Polarized Light Fields. Springer Series in Optical Science. Springer.
  26. Mei, Z. and Korotkova, O. (2016). Electromagnetic Schell-model sources generating far fields with stable and flexible concentric rings profiles. Opt. Express, 24(5):5572-5583.
  27. Pääkkönen, P., Tervo, J., Vahimaa, P., Turunen, J., and Gori, F. (2002). General vectorial decomposition of electromagnetic fields with application to propagation-invariant and rotating fields. Opt. Express, 10(18):949-959.
  28. Piquero, G., Gori, F., Romanini, P., Santarsiero, M., Borghi, R., and Mondello, A. (2002). Synthesis of partially polarized Gaussian Schell-model sources. Optics Communications, 208(13):9 - 16.
  29. Ramírez-S ánchez, V., Piquero, G., and Santarsiero, M. (2010). Synthesis and characterization of partially coherent beams with propagation-invariant transverse polarization pattern. Optics Communications, 283(22):4484 - 4489. Electromagnetic Coherence and Polarization.
  30. Rodrigo, J. A. and Alieva, T. (2015). Evolution of coherence singularities of Schell-model beams. Opt. Lett., 40(15):3635-3638.
  31. Santarsiero, M., Borghi, R., and Ramírez-S ánchez, V. (2009). Synthesis of electromagnetic Schell-model sources. J. Opt. Soc. Am. A, 26(6):1437-1443.
  32. Santarsiero, M., Gori, F., Borghi, R., Cincotti, G., and Vahimaa, P. (1999). Spreading properties of beams radiated by partially coherent schell-model sources. J. Opt. Soc. Am. A, 16(1):106-112.
  33. Serna, J., Mejías, P., and Mart ínez-Herrero, R. (1992). Beam quality dependence on the coherence length of Gaussian Schell-model fields propagating through ABCD optical systems. Journal of Modern Optics, 39(3):625-635.
  34. Seshadri, S. R. (1999). Partially coherent gaussian schellmodel electromagnetic beams. J. Opt. Soc. Am. A, 16(6):1373-1380.
  35. Setälä, T., Tervo, J., and Friberg, A. T. (2004). Complete electromagnetic coherence in the space-frequency domain. Opt. Lett., 29(4):328-330.
  36. Shirai, T., Korotkova, O., and Wolf, E. (2005). A method of generating electromagnetic Gaussian Schell-model beams. Journal of Optics A: Pure and Applied Optics, 7(5):232.
  37. Tervo, J., Setälä, T., and Friberg, A. T. (2003). Degree of coherence for electromagnetic fields. Opt. Express, 11(10):1137-1143.
  38. Wang, F. and Korotkova, O. (2016). Random sources for beams with azimuthally varying polarization properties. Opt. Express, 24(14):15446-15455.
  39. Zhan, Q. (2009). Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 1(1):1-57.
Download


Paper Citation


in Harvard Style

de Sande J., Martínez-Herrero R., Piquero G. and Maluenda D. (2017). Partially Coherent Linearly Polarized Sources with Inhomogeneous Azimuth . In Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-758-223-3, pages 202-207. DOI: 10.5220/0006123102020207


in Bibtex Style

@conference{photoptics17,
author={Juan Carlos González de Sande and Rosario Martínez-Herrero and Gemma Piquero and David Maluenda},
title={Partially Coherent Linearly Polarized Sources with Inhomogeneous Azimuth},
booktitle={Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},
year={2017},
pages={202-207},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006123102020207},
isbn={978-989-758-223-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - Partially Coherent Linearly Polarized Sources with Inhomogeneous Azimuth
SN - 978-989-758-223-3
AU - de Sande J.
AU - Martínez-Herrero R.
AU - Piquero G.
AU - Maluenda D.
PY - 2017
SP - 202
EP - 207
DO - 10.5220/0006123102020207