Identification of Types of Corrosion through Electrochemical Noise using Machine Learning Techniques

Lorraine Marques Alves, Romulo Almeida Cotta, Patrick Marques Ciarelli

2017

Abstract

Several systems in industries are subject to the effects of corrosion, such as machines, structures and a lot of equipment. As consequence, the corrosion can damage structures and equipment, causing financial losses and accidents. Such consequences can be reduced considerably with the use of methods of detection, analysis and monitoring of corrosion in hazardous areas, which can provide useful information to maintenance planning and accident prevention. In this paper, we analyze features extracted from electrochemical noise to identify types of corrosion, and we use machine learning techniques to perform this task. Experimental results show that the features obtained using wavelet transform are effective to solve this problem, and all the five evaluated classifiers achieved an average accuracy above 90%.

References

  1. Aballe, A., Bethencourt, M., Botana, F., and Marcos, M. (1999). Using wavelets transform in the analysis of electrochemical noise data. In Electrochimica Acta. Elsevier.
  2. Ahmad, S., Jibran, M. A. A., Azad, A. K., and Maslehuddin, M. (2014). A simple and reliable setup for monitoring corrosion rate of steel rebars in concrete. The Scientific World Journal, page 10.
  3. Amaya, J., Cottis, R. A., and Botana, F. (2005). Shot noise and statistical parameters for the estimation of corrosion mechanisms. In Corrosion Science. Elsevier.
  4. Barr, E., Greenfield, A., and Pierrard, L. (2001). Application of electrochemical noise monitoring to inhibitor evaluation and optimization in the field: Results from the kaybob south sour gas field. In Corrosion. NACE international.
  5. Bertocci, U., Gabrielli, C., Huet, F., and Keddan, M. (1997). Noise resistance applied to corrosion measurements. In Electrochemical Society Journal. electrochemical Society.
  6. Cottis, R. (2001). Interpretation of electrochemical noise data. In Corrosion. NACE international.
  7. Cottis, R. and Turgoose, S. (1999). Corrosion Testing Made Easy: Impedance and Noise Analysis. NACE International, Houston, 1nd edition.
  8. Cottis, R. A., Homborg, A., and Mol, J. (2015). The relationship between spectral and wavelet techniques for noise analysis. In Electrochimica Acta. Elsevier.
  9. Cox, W. M. (2014). A strategic approach to corrosion monitoring and corrosion management. Procedia Engineering, 86:567-575.
  10. Duda, R., Hart, D. G., and Stork, P. (2000). Pattern Recognition. Wiley Interscience, New York, 1nd edition.
  11. Fadel, S. G., Fatore, M., Duarte, S., and Paulovich, V. (2015). Loch: A neighborhood-based multidimensional projection technique for high-dimensional sparse spaces. In Neurocomputing. Elsevier.
  12. Fernandes, J., Kubota, L., and Neto, G. (2001). Ionselective eletrodes: historical, mechanism of response, selectivity and concept review. In Quimica Nova. Scielo.
  13. Fofano, S. and Jambo, H. (2007). Corrosion: fundamentals, monitoration and control. Ciencia Moderna, Brazil, 1nd edition.
  14. Gentil, V. (2003). Corrosion. LTC, Brazil, 1nd edition.
  15. Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. Prentice Hall, Canada, 2nd edition.
  16. Jian, L., Weikang, K., Jiangbo, S., Ke, W., Weikui, W., Z.Weipu, and Zhoumo, Z. (2013). Determination of corrosion types from electrochemical noise by artificial neural networks. In international Journal of Electrochemical Science. Electrochemical Science.
  17. Kim, J. (2007). Wavelet analysis of potentiostatic electrochemical noise. In Materials Letters. Elsevier.
  18. Koch, G., Varney, J., Thompson, N., Moghissi, O., Gould, M., and Payer, J. (2016). International measures of prevention, application and economics of corrosion technologies study (impact). In Technical report. NACE international.
  19. Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2):431-441.
  20. Masters, T. (1995). Advanced algorithms for Neural Networks: A C++ Sourcebook. John Wiley and Sonsl, New York, 1nd edition.
  21. Moshrefi, R., Mahjani, M., and Jafarian, M. (2014). Application of wavelet entropy in analysis of electrochemical noise for corrosion type identification. In Electrochemistry Communications. Elsevier.
  22. Planinsic, P. and Petek, A. (2008). Characterization of corrosion process by current noise-based fractal and correlation analysis. In Electrochimica Acta. Elsevier.
  23. Poursaee, A. (2010). Potentiostatic transient technique, a simple approach to estimate the corrosion current density and stern-geary constant of reinforcing steel in concrete. Cement and Concrete Research, 40(9):1451-1458.
  24. Quinlan, J. (1988). Decision trees and multivalued attributes. Oxford University Press, New York, 11nd edition.
  25. Research, E. P. A. (1980). Basics of corrosion measurements - application note corr-1. Technical report, Princeton.
  26. Rios, E., Zimer, A., Pereira, E., and Mascaro, L. (2013). Analysis of aisi 1020 steel corrosion in seawater by coupling electrochemical noise and optical microscopy. In Electrochimica Acta. Elsevier.
  27. Smulko, J., Darowicki, K., and Zielinski, A. (2002). Pitting corrosion in steel and electrochemical noise intensity. In Electrochemistry Communication. Elsevier.
  28. Theodoridis, S. and Koutroumbas, K. (2008). Recognition. Elsevier, San Diego, 4nd edition.
  29. Wharton, A., Woo, R. J. K., and Mellor, B. G. (2002). Wavelet analysis of electrochemical noise measurements during corrosion of austenitic and superduplex stainless steels in chloride media. In Corrosion Science. Elsevier.
Download


Paper Citation


in Harvard Style

Marques Alves L., Almeida Cotta R. and Marques Ciarelli P. (2017). Identification of Types of Corrosion through Electrochemical Noise using Machine Learning Techniques . In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-222-6, pages 332-340. DOI: 10.5220/0006122403320340


in Bibtex Style

@conference{icpram17,
author={Lorraine Marques Alves and Romulo Almeida Cotta and Patrick Marques Ciarelli},
title={Identification of Types of Corrosion through Electrochemical Noise using Machine Learning Techniques},
booktitle={Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2017},
pages={332-340},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006122403320340},
isbn={978-989-758-222-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Identification of Types of Corrosion through Electrochemical Noise using Machine Learning Techniques
SN - 978-989-758-222-6
AU - Marques Alves L.
AU - Almeida Cotta R.
AU - Marques Ciarelli P.
PY - 2017
SP - 332
EP - 340
DO - 10.5220/0006122403320340