Recognition of Handwritten Music Symbols using Meta-features Obtained from Weak Classifiers based on Nearest Neighbor

Jorge Calvo-Zaragoza, Jose J. Valero-Mas, Juan R. Rico-Juan

Abstract

The classification of musical symbols is an important step for Optical Music Recognition systems. However, little progress has been made so far in the recognition of handwritten notation. This paper considers a scheme that combines ideas from ensemble classifiers and dissimilarity space to improve the classification of handwritten musical symbols. Several sets of features are extracted from the input. Instead of combining them, each set of features is used to train a weak classifier that gives a confidence for each possible category of the task based on distance-based probability estimation. These confidences are not combined directly but used to build a new set of features called Confidence Matrix, which eventually feeds a final classifier. Our work demonstrates that using this set of features as input to the classifiers significantly improves the classification results of handwritten music symbols with respect to other features directly retrieved from the image.

References

  1. Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instancebased learning algorithms. Mach. Learn., 6(1):37-66.
  2. Bainbridge, D. and Bell, T. (2001). The challenge of optical music recognition. Computers and the Humanities, 35(2):95-121.
  3. Breiman, L. (2001). Random forests. Machine Learning, 45(1):5-32.
  4. Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2:121-167.
  5. Calvo-Zaragoza, J. and Oncina, J. (2014). Recognition of pen-based music notation: The HOMUS dataset. In 22nd International Conference on Pattern Recognition, ICPR 2014, Stockholm, Sweden, August 24-28, 2014, pages 3038-3043.
  6. Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1):21-27.
  7. Dalitz, C., Droettboom, M., Pranzas, B., and Fujinaga, I. (2008). A comparative study of staff removal algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 30(5):753-766.
  8. Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30.
  9. Duda, R. O. and Hart, P. E. (1973). Pattern Recognition and Scene Analysis. John Wiley and Sons, New York.
  10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The WEKA data mining software: an update. SIGKDD Explor. Newsl., 11(1):10-18.
  11. Jain, A. K., Mao, J., and Mohiuddin, K. M. (1996). Artificial neural networks: A tutorial. Computer, 29(3):31- 44.
  12. Kittler, J., Hatef, M., Duin, R. P. W., and Matas, J. (1998). On combining classifiers. IEEE Trans. on Patt. Anal. Machine Intelligencet, 20:226-239.
  13. Kuncheva, L. I. (2001). Using measures of similarity and inclusion for multiple classifier fusion by decision templates. Fuzzy sets and systems, 122(3):401-407.
  14. Kuncheva, L. I. (2004). Combining pattern classifiers : methods and algorithms. John Wiley & Sons.
  15. Oda, H., Zhu, B., Tokuno, J., Onuma, M., Kitadai, A., and Nakagawa, M. (2006). A Compact On-line and Offline Combined Recognizer. In Tenth International Workshop on Frontiers in Handwriting Recogntion, volume 1, pages 133-138.
  16. Pérez-Cortés, J. C., Llobet, R., and Arlandis, J. (2000). Fast and Accurate Handwritten Character Recognition Using Approximate Nearest Neighbours Search on Large Databases. In Ferri, F. J., I n˜esta, J. M., Amin, A., and Pudil, P., editors, Advances in Pattern Recognition, volume 1876 of Lecture Notes in Computer Science, pages 767-776, Berlin. Springer-Verlag.
  17. Platt, J. C. (1999). Advances in kernel methods. chapter Fast training of support vector machines using sequential minimal optimization, pages 185-208. MIT Press, Cambridge, MA, USA.
  18. Quinlan, J. R. (1993). C4.5: Programs for machine learning. Machine Learning.
  19. Rebelo, A., Capela, G., and Cardoso, J. S. (2010). Optical recognition of music symbols: A comparative study. Int. J. Doc. Anal. Recognit., 13(1):19-31.
  20. Rebelo, A., Fujinaga, I., Paszkiewicz, F., Marcal, A., Guedes, C., and Cardoso, J. (2012). Optical music recognition: state-of-the-art and open issues. International Journal of Multimedia Information Retrieval, 1(3):173-190.
  21. Rico-Juan, J. R. and Calvo-Zaragoza, J. (2015). Improving classification using a confidence matrix based on weak classifiers applied to OCR. Neurocomputing, 151:1354-1361.
  22. Rodriguez, J., Kuncheva, L., and Alonso, C. (2006). Rotation forest: A new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):1619-1630.
  23. Romero, V., Toselli, A. H., and Vidal, E. (2012). Multimodal Interactive Handwritten Text Transcription. Series in Machine Perception and Artificial Intelligence (MPAI). World Scientific Publishing.
  24. Seewald, A. K. (2002). How to make stacking better and faster while also taking care of an unknown weakness. In Proceedings of the Nineteenth International Conference on Machine Learning, ICML 7802, pages 554-561, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.
  25. Serra, J. (1982). Image Analysis and Mathematical Morphology. Academic Press.
  26. Vapnik, V. N. (1998). Statistical Learning Theory. Wiley, 1 edition.
  27. Vellasques, E., Oliveira, L., Jr., A. B., Koerich, A., and Sabourin, R. (2006). Modeling Segmentation Cuts Using Support Vector Machines. In Tenth International Workshop on Frontiers in Handwriting Recogntion, volume 1, pages 41-46.
Download


Paper Citation


in Harvard Style

Calvo-Zaragoza J., J. Valero-Mas J. and R. Rico-Juan J. (2017). Recognition of Handwritten Music Symbols using Meta-features Obtained from Weak Classifiers based on Nearest Neighbor . In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-222-6, pages 96-104. DOI: 10.5220/0006120200960104


in Bibtex Style

@conference{icpram17,
author={Jorge Calvo-Zaragoza and Jose J. Valero-Mas and Juan R. Rico-Juan},
title={Recognition of Handwritten Music Symbols using Meta-features Obtained from Weak Classifiers based on Nearest Neighbor},
booktitle={Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2017},
pages={96-104},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006120200960104},
isbn={978-989-758-222-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Recognition of Handwritten Music Symbols using Meta-features Obtained from Weak Classifiers based on Nearest Neighbor
SN - 978-989-758-222-6
AU - Calvo-Zaragoza J.
AU - J. Valero-Mas J.
AU - R. Rico-Juan J.
PY - 2017
SP - 96
EP - 104
DO - 10.5220/0006120200960104