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Abstract: This paper is a contribution to solving the domain adaptgpieblem where no labeled target data is available.
A new SVM approach is proposed by imposing a zero-vaMestimum Mean Discrepandike constraint.
This heuristic allows us to expect a good similarity betwseuarce and target data, after projection onto an
efficientsubspace of &eproducing Kernel Hilbert SpaceAccordingly, the classifier will perform well on
source and target data. We show that this constraint doanadify the quadratic nature of the optimization
problem encountered in classic SVM, so standard quadratimization tools can be used. Experimental
results demonstrate the competitiveness and efficiencyrahethod.

1 INTRODUCTION used in binary classification. It is well known for
its high generalization ability and the simplicity in
dealing with non-linearly separable data set by using
the kernel trick. Our method keeps these advantages
while performing well in the transfer learning con-
text. As shown in section 3, the optimization problem
remains convex and can be directly implemented us-
ing standard quadratic optimization tools. Adding a
MMD-like constraint is a heuristic that allows us to
expect that source and target data will become similar
in some selected subspace of the feature space. There-

the transfer learning problem where there is no la- f0ré, the separating hyperplane found by SVM for
beled target data available. According to the taxon- SOUrce data can perform well for target data. The ex-
omy given in (Pan and Yang, 2010), our proposed penmgntal resqlts prove the eﬁectlveness ofou_r idea.
method belongs to the transductive transfer learning 1 NiS Paper is organized as follows: in section 2,
where the source and the target share the same labef’® 9ivé a short summary of related work; then we
space but differentiate from each other in the feature Present our method in section 3 together with the op-

space. Marginal, conditional distributions and priors {imization solution to the problem (in section 4); we
might differ. This problem is also known as domain Prove the effectiveness of the proposed method on
adaptation. synthetic and real data sets in section 5. Finally, we

There is a variety of methods for transfer learn- conclude this paper and suggest perspectives.

ing. In this paper, we propose the use oSapport

Vector Machine (SVMjubject to a zero valuedaxi-

mum Mean Discrepancy (MMBike constraint. The 2 RELATED WORK

choice of a zero-valued MMD as the constraint is

that MMD is a non-parametric measure of the dis- Because the aim of our work is to perform MMD-like
tance between 2 distributions (Dudley, 2002) and it SVM based transductive transfer learning, we first re-
can be easily kernelized (Gretton et al., 2012). There- view the general transductive transfer learning prob-
fore, the combination of MMD and SVM is promis- lem, followed by a presentation of SVM based trans-
ing. SVM is a widely known classification method fer learning and MMD based transfer learning. Inter-

Recently, Transfer Learninghas received much at-
tention in the machine learning community. First
formally defined in (Pan and Yang, 2010), the aim
of Transfer Learning is to learn a good-performance
classifier or regressor in a new domain with the help
of previous knowledge issued from different but re-
lated domains; the new domain is designatetbas
getwhile domains of previous knowledge are desig-
nated assources In this paper, we propose to solve
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ested readers are referred to (Pan and Yang, 2010) andeview the basic theoretical foundations of MMD and
(Jiang, 2008) for more general transfer learning and its kernelized version

domain adaptation surveys. For a more recent survey

on domain adaptation, readers are referred to (Patel

etal., 2015)

Transductive transfer learning refers to a shared
label space but different source and target feature
spaces with different marginal and/or conditional dis-
tributions (Pan and Yang, 2010). To take full advan-
tage of source information is the key issue to make the
improvement in learning the target task. When target
labels are not available, typical methods include in-
stance weighting (Huang et al., 2006) with the neces-
sary assumption of the same conditional distributions.
Other authors propose structural corresponding learn-
ing for information retrieval (Blitzer et al., 2007).

SVM based transfer learning adapts the traditional
SVM to the transfer learning context. To the best of
our knowledge, there are five principal kinds of SVM
based transfer learning methods:

e transferring common parameterwWebmmon =

Warget — Wspecifid (Zhang et al., 2009)

iteratively using SVM to label target domain data
(Bruzzone and Marconcini, 2010)

reweighting the penalty term of SVM (Liang
etal., 2014)

adding extra regularization term to standard SVM
(Huang et al., 2012), (Tan et al., 2012)

SVM by integrating a transformed alignement
constraint combining the knowledge of different
natures (Li et al., 2011)

MMD based transfer learning combines the
MMD, which will be presented later in this paper,
with standard learning method to perform transfer. To
the best of our knowledge, MMD is used as a regular-
ization term of the objective function. The principal
idea is to deal with the trade-off between the classifi-
cation performance of source data and the similarity
of source and target. The interested reader could re-
fer to SVM-based transfer learning classification in
(Quanz and Huan, 2009), multiple kernel learning in
(Ren et al., 2010), multi-task clustering in (Zhang
and Zhou, 2012), maximum margin classification in
(Yang et al., 2012), feature extraction in (Pan et al.,
2011) (Uguroglu and Carbonell, 2011), etc.

3 PRESENTATION OF THE MMD
CONSTRAINED SVM METHOD

In this section, we present our MMD constrained
SVM transfer learning method. We first briefly
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3.1 Review of Basic Theoretical
Foundations

3.1.1 Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) is a non-

parametricdistancemeasure which can be used to
evaluate the difference between two distributions.
The definition of MMD is:

Definition 1 (Maximum Mean Discrepancy (Fortet
and Mourier, 1953))

Let ¥ be a class of function§: X — R andp, g
two Borel probabilistic measures defined &n The
Maximum Mean Discrepancy (MMetweenp and

g is defined as:

MMD[¥, p,d] = suprc s (Ep[f(X)] — Eq[f(¥)])

As a "distance measure” between two distribu-
tions, MMD has the following property:

Theorem 1 (Dudley, 1984)

Let (X,d) be a metric space anl g two Borel prob-
abilistic measures defined afy p = qiff Ep[f(x)] =
Eq[f(y)] for any functionf € C(X), whereC(X) is
the space of continuous bounded functions &ng
are random variables drawn from distributipmandq
respectively.

Thanks to the works of Smola (Smola, 2006) and
Gretton et al. (Gretton et al., 2012), distributions can
be embedded in a Reproducing Kernel Hilbert Space
(RKHS), where a distribution can be considered as
some mean element of this RKH%{:

HP] = Ex[k(x,.)]

(Smola et al., 2007). Accordingly, MMD can be
evaluated a$AMD[7, p,q] = ||Up — Mgl 27, Wherepy
stands fork, [k(x,.)] andk(x,.) is the representation
of xin the RKHS.

As a simple deduction, the squared MMD is:

MMD?[F, p,q] = [|ip — Mqll%,
= Ep,plk(x,X)] = 2Epg[k(x,y)] + Eqqlk(y,Y)]

Here, x and X' are independent observations drawn
from distributionp, y andy are independent obser-
vations from distributiory, k designates a universal
kernel function (which means thétx,.) is continu-
ous for allx and the RKHS induced bl is dense in

C(x))-
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Theorem 2 (Steinwart (Steinwart, 2002) and Smola The SVM problem can now be formulated as fol-
(Smola, 2006)) lows:
MMDI[¥F,p,q] =0iff p=qgwhen¥ = {f : | f|l, <
1} provided that# is universal.
An unbiased estimate of kernelized squared MMD

N TP
m|n§|\w\| +CZ£;
i=

is proposed in (Serfling, 2009): ST <M = Hx, W > j 8 (1)
& >
MMD.[F,X,Y] = Z;k X, ;) YiWe(x)+b)>1—gvi=1..n
Our approach of using a MMD-like constraint in-

stead of a MMD-regularization-term is to guarantee
ZI; (¥i,Yj) — ZZ K(xi,Y;j) the transfer ability. In (Quanz and Huan, 2009),
n(n— 1
Quanz and Huan suggest to solve the problem :
min 3 |w|[2 + C 51y & +Al| < e, — b, W > ||%. In
that case, depending on the finite value of the regu-

ples drawn fronp andq respectively. o ) -
SVM ai find the h | hataximall larization parametek, we may sometimes sacrifice
aims to find the hyperplane thataximally this similarity to achieve a high classification accu-

separates two classes. The commonly used formula- 5.y tor source only. Furthermore, during the opti-
tionis: mization process, their method requires the calcula-

wherex,i=1,...,mandy;,i=1,...,nare iid exam-

- n tion of the inverse of a matrix which slows down the
min> [wl [+ C'Zii algorithm and causes inaccuracy, while this is avoided
= in our work.
st.g >0

yiw'o(x)+b)>1—¢gVi=1,..,n
_ 4 DUAL FORM OF THE
where, as usualy is the hyperplane pa_ramejems OPTIMIZATION PROBLEM

the error term associated to observatioi€ is the
trade-off parameter between the margin term and the
classification errorg(x;) is the kernel representation
of X, i is the label ofx;, andb is the bias.

In order to solve the above primal problem, we use the
representer theorer(Scholkopf et al., 2001)w, the
optimum solution of Equation 1 in the above section ,

can be expressed as:
3.2 MMD Constrained SVM Transfer

Ns Nt
Learning W= Z BROOR) + ZBF(P(XD )

wheref} and[3t are the unknowns. Incorporating this

We now propose a heuristic to constrain the hyper- expression into the constraint, we obtain:
plane that maximizes the margin between the source < Hxe — Hxs W > o7
S 9

classes (and minimizes the corresponding classifica-

tion error) to lie in a subspace where source and tar- —< 1 < ox) — 1 % o))
get distributions are as similar as possible. Another Ns & L= .
assumption is that the conditional probability distri- Ns "
butions of labels are also similar (hypothesis that can- z Bro(xg) + z B}q)(x}) >
not be verified because the target labels are supposed =1 =1

unknown). Accordingly, we can expect the classi-
fier to perform well, both on source and target data.

Bk Zl < (P(Xl (P(Xk)

By imposing < px, — Hx,W > 4= 0, we expect 1=

that source and target data will be similargf

The heuristic used tmaximizehe similarity between ns k 1
source and target is to satisfy the proposed constraint: z Bs Z < QX ), %)
-0 k i
< Hxs = Mx s W > 5= 0 km
wherepy, (H) is the sample mean of source (target) n_ Z Z < @(x), 9(x) >
data in# and can be estimated hy, = nlsz(p(xs) 1 ;{
(M = 5 T O(%))- _EZ\ Z < Q%)) @(x) >
= (KD)"B
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Kst Kr1|’

Krs=< @(Xj), ®(Xk) > 27, KsT =< @(Xi), P(X1) >4,
Krt =< @(Xj),0X) > 4. Herex, X € Xs andxj,x €

whereK = [KSS KTS} Kss=< @(Xi), ®(Xc) >4,

~ 1 1 1 1
b= S,tTandlz _7“.’_7__7.“7__T.
X; B=[B°B] e T T
S—_—— ——
Ns N

Incorporatingw (2) into ||w||?, we have : ||w||? =

BTKP.

if # is a RKHS onX and %y € # is a closed sub-
space, therf is also a RKHS orX. Therefore, the

Kg 11T KT
matrix Knew= Kss— === is the new Gram matrix

corresponding to the prOjected kernglewis positive
semi-definite.

Considering the dual form of the optimization
problem, we can solve it using standard quadratic
programming tools. However, in order to shorten
calculations, we used here an adaptation of the F-

We now introduce the Lagrange parameters to solve S\VC decomposition algorithm proposed in (Tohmé

this constrained problem:

L = maxmin= BTKB+CZS. Zia.s.

LN Beb 2
- ;M Vi (BT@(X)®(x) +b) — 1+&] —n(K1TP)

After some manipulations we obtain the dual form:
Ns
K1
max M—— HiyiK (> HyiKj)
X3 2
1 o 73 ke NTT
2” 1'K'1 fl(i;My.K.l) 1

Ns
st.0<y <Cand Zmyi =0
i=

whereK; =< ¢(X),@(x) >4 and X represents the
ensemble oKs andX;; X is a single point either from
Xs OF X;.

As there are two different kinds of Lagrange pa-
rametergt andn, we eliminate one by first fixing the
value ofp and maximizing only the two latter terms
(related withn) of the Lagrange function. The op-
timal value ofn can be expressed as a function of

cn (S k)Tl - ’
Hn=—=r7— We now obtain the final dual
form of the optimization problem:
11T Ns

Ns 1 Ns T
max | — = LY K Tt = = iYiK
\ i;M Z(i;w i) ( 1T|<T1)(j§1“’y’ i)

Ns
st.0<p <Cand Zi“iyi =0.
=

Lety; denoteyy;, the previous problem becomes:
1 Kg11TKI
T T S

axy 5V (Kss TR

Ns
st. Zw = 0 andmin(0,Cy) <y < max0,Cy).
i=

11T
whereKs = 3, Ki . The matrixKss— —= Kl Ks s

and Lengellé, 2008). Adaptation and implementation
are straightforward.

5 EXPERIMENTS

5.1 Data Sets

Our goal is to improve the classification performance
on target data with the help of related but different
source data.

To illustrate our method on a simple data set,
we first consider some linearly separable data and
we select the linear kernel (which is not univer-
sal so the heuristic should not lead to satisfactory
results). We generate two almost linearly separa-
ble gaussian groups denoted as source-positive and
source-negative. Then we do the same to generate the
target data (there is no label provided for the target
data). An example of this data set is shown in fig. 1.

A second, more complicated synthetic data set is
the well-known banana-orange data set. We desig-
nate the banana as the source positive and the orange
as the source negative. We also generate a target data
setwhich is drawn from a translated and distorted ver-
sion of the distribution of the source data. Here again,
no label information is available for the target (see an
example in fig. 3).

We now use théJSPSdata set, a famous hand-
written digital number data set. The version used is
composed of training and testing parts, both contain-
ing the image information (16 * 16 pixels) of 10 dif-
ferent numbers. As proposed in (Uguroglu and Car-
bonell, 2011), we choose to separate digits 4 and 7 as
the source classification problem. All the source data
is extracted from the training subset dEPSand is
perfectly labeled. The target classification problem
aims at separating digits 4 and 9 (without the use of
the corresponding labels). All target data is extracted
from the testing subset of the datab&&PS

We compare the results we obtained with the

the matrix of inner products (in the subspace orthogo- method proposed in (Quanz and Huan, 2009) LM and
nal tow) of source data. As stated in (Paulsen, 2009), also with standard SVM trained only on source data
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(a) Example of a classifier obtained with our (b) Decision surface obtained
method (for the optimal value @f)

(c) Example of a classifier obtained with LM (d) Decision surface (LM)
(for the optimal value 06)

Figure 3: Results obtained on the banana-orange data s¥i@)land 3(c), circles and stars represent the labeledesdate
while "plus” symbols are the unlabeled target data. In 3(ig) &(d), the decision surfaces are plotted as functionseoiibut
space coordinates. Thresholding these surfaces at O lgeslthe decision curves corresponding to the classifie3gapand
3(c), respectively.

(no transfer learning in this case). In (Quanz and
Huan, 2009), LM has been proved superior to other
transfer learning methods so we omit here the com-
parison to other transfer learning methods.

5.2 Experimental Results and Analysis

For a visual comprehension of our SVM-MMD

method, we show in fig. 1 the results obtained on the
first synthetic data set. Stars represent source-positiv
data, triangles are source-negative data, crosses ar
target data; the two circles are the means of source

eFigure 2: Average performance (good classification rate)
+1 s.d. as a function of the gaussian kernel parameter. Red
fine : our method. Black line : LM.

and target data, respectively. As can be seen, the nor-
* mal to the obtained discriminant function is orthogo-
nal toms — M, as expected (for this kernel, the mean
of the original source (target) data coincides with
(He)-)

For the second synthetic data set (fig. 2), we
show the classification result we obtained compared
to those of LM. We do not compare with standard
SVM on source target data, because obviously stan-

42 o 2 4 5 8 1w 12 dard SVM will fail here (see fig. 3(a)). Example of
Figure 1: Linearly separable data set using the linear kerne classification results (data sets, discriminant functions

(triangles and stars represent the labeled source dathe whi obtaine_d on source and target, decision surfaces) are
"plus” symbols represent the unlabeled target data). shown in fig. 3.
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