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Abstract: We say that two situations described by cooperative games are inseparable by a family of solutions, when they
obtain the same allocation by all solution concept of this family. The situation of separability by a family of
linear solutions reduces to separability from the null game. This is the case of the family of solutions based
on marginal contributions weighted by coefficients only dependent of the coalition size: the semivalues. It is
known that for games with four or more players, the spaces of inseparable games from the null game contain
games different to zero-game. We will prove that for five or more players, when a priori coalition blocks are
introduced in the situation described by the game, the dimension of the vector spaces of inseparable games
from the null game decreases in an important manner.

1 INTRODUCTION

Probabilistic values as a solution concept for coop-
erative games were introduced in (Weber, 1988). The
payoff that a probabilistic value assigns to each player
is a weighted sum of its marginal contributions to the
coalitions, where the weighting coefficients form a
probabilistic distribution over the coalitions to which
it belongs. A particular type of probabilistic values is
formed by the semivalues that were defined in (Dubey
et al., 1981). In this case the weighting coefficients
are independent of the players and they only depend
on the coalition size. Semivalues represent a natu-
ral generalization of both the Shapley value (Shapley,
1953) and the Banzhaf value (Banzhaf, 1965; Owen,
1975). According to this approach, many works deal
with the semivalues, with general properties as in
(Carreras and Giménez, 2011), or applied to simple
games as in (Carreras et al., 2003), and many others.

It is possible to find two cooperative games that
obtain the same payoff vector for each semivalue. We
say that these games are inseparable by semivalues.
By the linearity property of semivalues, we can re-
duce the problem of separability between games to
separability from the null game. The vector subspace
of inseparable games from the null game by semival-
ues is called in (Amer et al., 2003) shared kernel and
its dimension is 2n− n2 + n− 2, where n denotes the
number of players. For spaces of cooperative games
with four or more players, the shared kernel contains

games different to zero-game
The semivalues form an important family of solu-

tions. We can evaluate their amplitude according to
their faculty to separate games. Two games are sepa-
rable if their difference does not belong to the shared
kernel. The dimension of this subspace would mark
the separation impossibility. In this paper we consider
coalition structures in the player set. It is not diffi-
cult to find in the literature many papers devoted to
the modified semivalues by coalition structures, for
instance (Albizuri, 2009) or (Giménez and Puente,
2015), among others. Our purpose is to reduce the di-
mension of the vector subspace of inseparable games
from the null game. For cooperative games with five
or more players, modified semivalues for games with
coalition structure (Amer and Giménez, 2003) are
able to reduce in a significant way the dimension of
the shared kernel.

In addition, once an a-priori ordering is chosen in
the player set, we can see in (Amer et al., 2003) that
the shared kernel is spanned by specific {−1,0,1}-
valued games. These games are known as commuta-
tion games. Now, we will prove that the vector sub-
space of inseparable games from the null game by
modified semivalues is spanned by games introduced
here with the name of expanded commutation games.

The paper is organized as follows. In Section 2
we remember the solution concepts of semivalue and
semivalue modified for games with a coalition struc-
ture whose allocations can be computed by means of
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the multilinear extension (Owen, 1972) of each game.
Also, nomenclature and main results for inseparable
games by semivalues are described. Section 3 shows
that commutation games that are the solution for the
problem of separability by semivalues does not have
in general the same properties with respect to separa-
bility by modified semivalues. In section 4 two suffi-
cient conditions for separability by modified semival-
ues are proposed. Finally, in Section 5 we determine
the dimension and a basis of the vector subspace of
inseparable games from the null game by modified
semivalues.

2 PRELIMINARIES

2.1 Cooperative Games and Semivalues

A cooperative game with transferable utility is a pair
(N,v), where N is a finite set of players and v : 2N →
R is the so-called characteristic function, which as-
signs to every coalition S⊆ N a real number v(S), the
worth of coalition S, and satisfies the natural condi-
tion v( /0) = 0. With GN we denote the set of all co-
operative games on N. For a given set of players N,
we identify each game (N,v) with its characteristic
function v.

The multilinear extension MLE (Owen, 1972) of
cooperative game v∈GN is a function fv : [0,1]N→R
defined as

fv(x1,x2, ...,xn) = ∑
S⊆N

∏
i∈S

xi ∏
j/∈S

(1− x j)v(S), (1)

so that it provides all information of the game con-
tained in its characteristic function v.

A function ψ : GN → RN is called a solution and
it represents a method to measure the negotiation
strength of the players in the game. The payoff vec-
tor space RN is also called the allocation space. The
semivalues (Dubey et al., 1981) as solution concept
were introduced and axiomatically characterized by
Dubey, Neyman and Weber in 1981. The payoff to
the players for a game v ∈ GN by a semivalue ψ is an
average of marginal contributions of each player:

ψi[v] = ∑
S3i

ps[v(S)− v(S\{i})] ∀i ∈ N, (2)

where the weighting coefficients ps only depend on
the coalition size and verify ∑n

s=1
(n−1

s−1

)
ps = 1 and

ps ≥ 0 for 1 ≤ s ≤ n. With Sem(GN) we denote the
set of all semivalues on GN .

Given a number α ∈ R, 0 < α < 1, we call bi-
nomial semivalue ψα to the semivalue whose coeffi-
cients are pα,s =αs−1(1−α)n−s. The extreme cases

correspond to values α = 0 and α = 1. For α = 0
we obtain the dictatorial index ψ0, with coefficients
(1,0, ...,0), whereas for α = 1 we obtain the marginal
index ψ1, with coefficients (0, ...,0,1):

(ψ0)i[v] = v({i}) ∀i ∈ N,

(ψ1)i[v] = v(N)− v(N \{i}) ∀i ∈ N.

It is proven in (Amer and Giménez, 2003) that n
different binomial semivalues form a reference sys-
tem for the set of semivalues on GN . Given n dif-
ferent numbers α j in [0,1], for every semivalue ψ ∈
Sem(GN) they exist unique coefficients λ j, 1≤ j≤ n,
such that ψ = ∑n

j=1 λ jψα j .
The Banzhaf value (Banzhaf, 1965; Owen, 1975)

is the binomial semivalue for α = 1/2. As it happens
for the Banzhaf value, we see in (Amer and Giménez,
2003) that the allocation by every binomial semivalue
can calculate replacing in the partial derivatives of
MLE the variables by value α:

(ψα)i[v] =
∂ fv

∂xi
(α) ∀i ∈ N, where α = (α, . . . ,α).

In addition, the allocation for every semivalue can
be computed by means of a product of two matrices,

ψ[v] = B Λ, (3)

where the matrix B depends on each reference system
of semivalues B = (bi j )1≤i, j≤n with bi j = (ψα j)i[v] =
∂ fv
∂xi

(α j) and Λ is the column matrix of the coefficients
of ψ in this reference system, Λt = (λ1 λ2 · · ·λn) if
ψ = ∑n

j=1 λ jψα j . Thus, a (n×n)-matrix summarizes
the payments by any semivalue to all players of a
given game v.

2.2 Cooperative Games and Coalition
Structures

The formation of coalition blocks in the player set N
gives rise to the construction of modified solutions in
attention to this circumstance. It is the case of the
Owen coalition value (Owen, 1977) from the Shap-
ley value (Shapley, 1953) or the modified Banzhaf
value for games with coalition structure (Owen, 1981)
from the Banzhaf value. If we denote by B =
{B1,B2, ...,Bm} the coalition structure in N, in both
cases, the construction of the modified solutions fol-
lows a parallel way. It is considered a modified quo-
tient game for each coalition S ⊆ B j and it is applied
the Shapley or Banzhaf value. This action defines a
game in B j and there it is now applied the same solu-
tion obtaining for each i∈B j the modified allocations.

Given a semivalue ψ ∈ Sem(GN) with weighting
coefficients pn

s , the recursively obtained numbers

pm
s = pm+1

s + pm+1
s+1 1≤ s≤ m < n,
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define a induced semivalue ψm (Dragan, 1999) on the
space of cooperative games with m players. Adding
the own semivalue, the family of induced semivalues
{ψm ∈ Sem(GM)/1≤ m≤ n} allows us to define the
concept of semivalue modified for games with coali-
tion structure (Amer and Giménez, 2003) following
the same procedure as above. For a player i belongs
to coalition block B j the modified allocation has by
expression

ψi[v;B] = ∑
S⊆B j\{i}

∑
T⊆M\{ j}

p
b j
s+1 pm

t+1

[
v
(⋃

t∈T

Bt ∪S∪{i}
)
− v
(⋃

t∈T

Bt ∪S
)]
.

(4)

For the extreme coalition structures, individual
blocks and grand coalition, the modified allocations
agree with the allocation by the initial semivalue.
Also, the allocations by modified semivalues can be
computed by means of a product of matrices, once
a reference system of binomial semivalues has been
chosen:

ψi[v;B] = Λt A(i) Λ. (5)

Matrix Λ is like in expression (3). The terms
apq(i), 1 ≤ p,q ≤ n, of matrix A(i) can be obtained
by means of the following rules:

(i) Obtain the MLE fv = fv(x1, ...,xn) of game v.
(ii) For each t ∈M, t 6= j, and each m ∈ Bt replace

the variable xm by yt . Thus, a new function of the
variables xk, yt for k ∈ B j and t ∈M \{ j} is obtained.

(iii) In the above function, reduce all exponents
that appear in yt to 1, that is, replace yr

t (r > 1) by yt ,
obtaining another multilinear function g j(xk,yt) k ∈
B j and t ∈M \{ j}.

(iv) Calculate the derivative of the function g j with
respect to variable xi.

(v) Replace each xk with αp and each yt with αq.
Then,

apq(i) =
∂g j

∂xi
(αp,αq) for 1≤ p,q≤ n. (6)

2.3 Separability in Cooperative Games

We say that two cooperative games v,v′ ∈GN are sep-
arable by a solution ψ on GN if ψ[v] 6=ψ[v′] for v 6= v′.
When we study separability between games accord-
ing to semivalues, we can only consider separability
from the null game, since these solutions verify lin-
earity property.

For each GN , the linear subspace of all cooperative
games inseparable by semivalues from the null game
is called in (Amer et al., 2003) shared kernel CN . It
is proven that the dimension of CN is 2n−n2 +n−2,

since games in CN have to satisfy conditions:

∑
S3i, |S|=s

v(S) = 0 for all i ∈ N and 1≤ s≤ n. (7)

Grouping these conditions according to coalition
sizes, the freedom degrees for each s with 2 ≤ s ≤
n−2 are

(n
s

)
−n, whereas v(S) = 0 for |S|= 1, n−1, n.

This way, the dimension of CN is 2n− n2 + n− 2 for
|N|= n≥ 2 and CN = {0} if |N|= 2, 3.

In game spaces GN with cardinality |N| ≥ 4, for a
given coalition S ⊆ N and players i, j ∈ S and k, l ∈
N \S, we define the commutation game vS,i, j,k,l as

vS,i, j,k,l = 1S +1S∪{k,l}\{i, j}−1S∪{k}\{i}−1S∪{l}\{ j} ,
(8)

where 1S is the unity game in GN (1S(S) = 1 and
1S(T ) = 1 otherwise). If v ∈ GN is a commutation
game, then v ∈ CN . In (Amer et al., 2003), it is
proven that the shared kernel is spanned by commuta-
tion games. Since each commutation game takes non
null values uniquely on coalitions of a single size, the
number of selected games in the proof of this property
is
(n

s

)
−n for coalitions S with 2≤ s≤ n−2 (|S|= s).

3 COMMUTATION GAMES AND
COALITION STRUCTURES

Let us remember that with CN we denote the linear
subspace of all cooperative games in GN inseparable
from the null game by semivalues.

Proposition 3.1. Let fv = fv(x1,x2, ...,xn) be the
MLE of game v ∈ GN .

v ∈CN ⇔ ∇ fv(α) = 0 ∀α ∈ [0,1], α = (α, . . . ,α).

Proof. If v ∈ CN , then ψ[v] = 0 ∀ψ ∈ Sem(GN).
In particular, for all binomial semivalue ψα with α ∈
[0,1], ψα[v] = ∇ fv(α) = 0 where α = (α,α, . . . ,α).

Conversely, since n binomial semivalues form
a reference system in Sem(GN), every semivalue
ψ ∈ Sem(GN) can uniquely be written like ψ =
∑n

j=1 λ jψα j with α j ∈ [0,1] for 1≤ j ≤ n. Then,

ψ[v] =
n

∑
j=1

λ jψα j [v] =
n

∑
j=1

λ j∇ fv(α j) = 0

and game v belongs to the shared kernel CN . �

Example. Let N = {i, j,k, l} be the set of players.
For cooperative games with four players the coalition
S in the commutation games is only composed by two
players. For short, when S = {i, j} we write the com-
mutation game vS,i, j,k,l as vi, j,k,l , i. e.,

vi, j,k,l = 1{i, j}+1{k,l}−1{ j,k}−1{i,l}.
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The MLE of this game is fvi, j,k,l = xix j +xkxl−x jxk−
xixl . It is easy to see that ∇ fvi, j,k,l (α) = 0 ∀α ∈ [0,1],
α = (α,α,α,α).
Definition 3.2. We say that a cooperative game v ∈
GN is inseparable from the null game by semivalues
modified for games with coalition structure if and only
if ψ[v;B] = 0 for every semivalue ψ on GN and every
coalition structure B in N

The above definition introduces our central con-
cept of separability between games by modified semi-
values; linearity of these solutions allows us to reduce
the problem to separability from the null game. Now,
the commutation games that give the solution to the
problem of separability by semivalues, offer a differ-
ent answer according to the cardinality of the player
set.
Proposition 3.3. Let GN be the vector space of coop-
erative games with four players, |N| = 4. Condition
of inseparable by semivalues is equivalent to condi-
tion of inseparable by semivalues modified for games
with coalition structure.

Proof. For case |N|= 4, the shared kernel CN has
dimension 2. According to development in (Amer
et al., 2003), a basis for CN is formed by commutation
games v1,4,3,2 and v2,4,3,1. For the commutation games
in a basis of CN , we will prove that condition of insep-
arability from the null game by semivalues extends
to condition of inseparability from the null game by
modified semivalues. For the remaining games in CN ,
the property is verified by linearity.

We consider, for example, game v2,4,3,1 and simul-
taneously all possible types of coalition structures in
N = {1,2,3,4}. (a) Four individual blocks. (b) One
bipersonal block where game v2,4,3,1 takes non-null
value and two individual blocks. (c) Like in (b) but
taking null value. (d) Two bipersonal blocks where
game v2,4,3,1 takes non-null values. (e) Like in (d) but
taking null values. (f) One coalition block with three
players. (g) Only one coalition block with four play-
ers.

In cases (a) and (g), both allocations coincide:
ψ[v2,4,3,1;B] = ψ[v2,4,3,1] = 0 ∀ψ ∈ Sem(GN), B =
{{1},{2},{3},{4}} or B = {{1,2,3,4}}.

From now, we will use the MLE fv2,4,3,1 = x2x4 +
x1x3− x3x4− x1x2.

Case (b). We consider, for instance, coalition
structure B = {{1,2},{3},{4}}. According to rules
that lead to coefficients in expression (6) for obtaining
value ψ1[v2,4,3,1;B] by means of a product of matrices
as in (5), we first determine modified MLE g1:

g1(x1,x2,y2,y3) = x2y3 + x1y2− y2y3− x1x2 ;

∂g1

∂x1
= y2− x2 ⇒ apq(1) =

∂g1

∂x1
(αp,αq) = αq−αp

for 1≤ p, q≤ 4.
Written any semivalue ψ as linear combination of

four different binomial semivalues, we can conclude
that

ψ1[v2,4,3,1;B] = Λt A(1) Λ = 0 ∀ψ ∈ Sem(GN),

since, in this case, matrix A(1) satisfies apq(1) =
−aqp(1) for 1 ≤ p, q ≤ 4. In a similar way,
ψ2[v2,4,3,1;B] = 0 ∀ψ ∈ Sem(GN).

Now, for obtaining value ψ3[v2,4,3,1;B], we deter-
mine modified MLE g2:

g2(y1,x3,y3) = y1y3 + y1x3− x3y3− y1 ;

∂g2

∂x3
= y1− y3 ⇒ apq(3) =

∂g2

∂x3
(αp,αq) = 0

for 1≤ p, q≤ 4.
Then ψ3[v2,4,3,1;B] = 0 and, also, ψ4[v2,4,3,1;B] =

0.
Case (c). Possible coalition structure B =

{{1,4},{2},{3}}.
g1(x1,x4,y2,y3) = y2x4 + x1y3− y3x4− x1y2 ;

∂g1

∂x1
= y3− y2 ⇒ apq(1) =

∂g1

∂x1
(αp,αq) = 0

for 1≤ p, q≤ 4.
Consequently, ψ1[v2,4,3,1;B] = 0. In a similar way,

ψ4[v2,4,3,1;B] = 0 and ψ2[v2,4,3,1;B] =ψ3[v2,4,3,1;B] =
0.

Similar manipulations of MLE fv2,4,3,1 in cases
(d), (e) and (g) give rise to the same conclusion
ψ[v2,4,3,1;B] = 0.

Conversely, if a game is inseparable from the null
game by modified semivalues, in particular, it is in-
separable from the null game by semivalues. It suf-
fices to consider the coalition structure formed by in-
dividual blocks. �
Proposition 3.4. For vector spaces of cooperative
games GN with five or more players, every commu-
tation game is separable from the null game by semi-
values modified for games with coalition structure.

Proof. In GN with |N| ≥ 5, the commuta-
tion gamevS,i, j,k,l = 1S + 1S∪{k,l}\{i, j} − 1S∪{k}\{i} −
1S∪{l}\{ j} , with i, j ∈ S and k, l ∈ N \S, has by MLE

fvS,i, j,k,l = [xix j + xkxl− x jxk− xixl ]

∏
p∈S\{i, j}

xp ∏
q∈N\(S∪{k,l})

(1− xq).

For coalitions S with 2 ≤ |S| < n−2, we con-
sider coalition structure BS = {S,N\S}. The modified
MLE g1 for players in block S is

g1 = xix j(1− y2) ∏
p∈S\{i, j}

xp
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and
∂g1

∂xi
= x j(1− y2) ∏

p∈S\{i, j}
xp ,

where N \ (S∪{k, l}) 6= /0 since |S|< n−2.
Then, modified Banzhaf value β separates game

vS,i, j,k,l , 2≤ |S|< n−2, from the null game:

βi[vS,i, j,k,l ;BS] =
∂g1

∂xi
(1/2,1/2) =

1
2s 6= 0.

For case |S|= n−2, S = N \{k, l} and the MLE is

fvN\{k,l},i, j,k,l = [xix j + xkxl− x jxk− xixl ] ∏
p∈N\{i, j,k,l}

xp.

Now, we consider coalition structure BN\{k,l} = {N \
{k, l},{k, l}} and we obtain the modified MLE g1 for
players in block N \{k, l}:

g1 = [xix j + y2− x jy2− xiy2] ∏
p∈N\{i, j,k,l}

xp,

where N \ {i, j,k, l} 6= /0 since |N| ≥ 5. Let h be
a player in N \ {i, j,k, l}. Again, modified Banzhaf
value β separates game vN\{k,l},i, j,k,l from the null
game:

∂g1

∂xh
= [xix j + y2− x jy2− xiy2] ∏

p∈N\{h,i, j,k,l}
xp

and

βh[vN\{k,l},i, j,k,l ;BN\{k,l}] =
∂g1

∂xh
(1/2,1/2) =

1
2n−3 6= 0.

�

4 SUFFICIENT CONDITIONS OF
SEPARABILITY

For games with five or more players, the commuta-
tion games are not a solution for the problem of in-
separability by semivalues modified for games with
coalition structure. In this section we provide two
sufficient conditions of separability, that is, two nec-
essary conditions of inseparability from the null game
by modified semivalues.

Proposition 4.1. Let us consider vector spaces of co-
operative games GN with |N| ≥ 4. If there exists a
coalition S with v(S) 6= v(N \ S), then game v is sep-
arable from the null game by semivalues modified for
games with coalition structure.

Proof. Let us suppose S′ a coalition with smallest
size that verifies v(S′) 6= v(N \ S′). If |S′| = 1, game
v is separable from the null game by semivalues and
also by modified semivalues. We can consider that

|S′|= s′ ≥ 2 and s′ ≤ n/2. Then, the MLE of game v
can be written as

fv = ∑
S:2≤|S|≤s′

[
∏
i∈S

xi ∏
j∈N\S

(1− x j)v(S)+

∏
i∈N\S

xi ∏
j∈S

(1− x j)v(N \S)
]
+

∑
S:s′<|S|<n−s′

∏
i∈S

xi ∏
j∈N\S

(1− x j)v(S).

Now, we choose the coalition structure BS′ =
{S′,N \S′}. In such a case, the modified MLE g1 for
players in coalition block S′ has by expression

g1= ∑
S⊂S′,s≥2

[
(1− y2)∏

i∈S
xi ∏

j∈S′\S
(1− x j)+

y2 ∏
i∈S′\S

xi∏
j∈S

(1− x j)
]
v(S)+

(1− y2)∏
i∈S′

xi v(S′)+ y2 ∏
j∈S′

(1− x j)v(N\S′),

because terms for coalitions S containing elements as
much in S′ as in N\S′ vanish in MLE g1. If k is a
player in S′,

∂g1

∂xk
= ∑

S⊂S′,s≥2,S3k

[
(1− y2) ∏

i∈S\{k}
xi ∏

j∈S′\S
(1− x j)−

y2 ∏
i∈S′\S

xi ∏
j∈S\{k}

(1− x j)
]

v(S)+

∑
S⊂S′,s≥2,S 63k

[
− (1− y2)∏

i∈S
xi ∏

j∈S′\(S∪{k})
(1− x j)+

y2 ∏
i∈S′\(S∪{k})

xi ∏
j∈S

(1− x j)
]

v(S)+

+(1− y2) ∏
i∈S′\{k}

xi v(S′)− y2 ∏
j∈S′\{k}

(1− x j)v(N\S′).

Then
∂g1

∂xk
(1/2,1/2) =

1
2s′
[
v(S′)− v(N\S′)

]

and the modified Banzhaf value β separates game v
from the null game:

βk[v;BS′ ] =
∂g1

∂xk
(1/2,1/2) 6= 0 for k ∈ S′. �

Proposition 4.2. For spaces of cooperative games
GN with |N| ≥ 6, let us consider a game v that sat-
isfies v(S) = v(N \S) ∀S ⊆ N and v({i}) = 0 ∀i ∈ N.
If there exists a coalition S with

v(S) 6= ∑
T⊂S, |T |=2

v(T ) and 3≤ |S| ≤ n/2, (9)

then game v is separable from the null game by semi-
values modified for games with coalition structure.
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Proof. The MLE of game v that satisfies the two
first conditions of the statement can be written as
fv = ∑

S:2≤|S|<n/2[
∏
i∈S

xi ∏
j∈N\S

(1− x j)+ ∏
i∈N\S

xi ∏
j∈S

(1− x j)
]
v(S)+

∑
S: |S|=n/2

∏
i∈S

xi ∏
j∈N\S

(1− x j)v(S),

(10)
where the second sum only appears in case n even
number. Let us suppose S′ a coalition with smallest
size that verifies (9) for |S′|< n/2. In such a case, we
choose coalition structure BS′ = {S′,N \S′} and write
modified MLE g1 for players in coalition block S′:

g1 = ∑
S⊂S′,2≤s<s′

[
(1− y2)∏

i∈S
xi ∏

j∈S′\S
(1− x j)+

y2 ∏
i∈S′\S

xi ∏
j∈S

(1− x j)
]

v(S)+

[
(1− y2)∏

i∈S′
xi + y2 ∏

j∈S′
(1− x j)

]
v(S′).

Next, we consider a player j1 in block S′, compute
the partial derivative of MLE g1 with respect to vari-
able x j1 and replace all variables by generic value α
grouping the sums as follows:
∂g1

∂x j1
(α,α) =

∑
S⊂S′,S3 j1, |S|=2

[
α(1−α)s′−1−αs′−1(1−α)

]
v(S)+

∑
S⊂S′,S3 j1,2<s<s′

[
αs−1(1−α)s′−s+1−αs′−s+1(1−α)s−1]

v(S)+

∑
S⊂S′,S 63 j1,2≤s<s′−1

[
αs′−s(1−α)s−αs(1−α)s′−s]v(S)+

[
α(1−α)s′−1−αs′−1(1−α)

][
v(S′\{ j1})− v(S′)

]
.

All terms for coalitions S with S 63 j1 and 2≤ s <
s′− 1 can be written by means of coalitions T with
T 3 j1 and 3≤ t < s′. Then,
∂g1

∂x j1
(α,α) = α(1−α)

[
(1−α)s′−2−αs′−2]

{
∑

S⊂S′,S3 j1, |S|=2
v(S)+ v(S′\{ j1})− v(S′)

}
+

∑
S⊂S′,S3 j1,2<s<s′

[
αs−1(1−α)s′−s+1−αs′−s+1(1−α)s−1]

v(S)+

∑
T⊂S′,T3 j1,2<t<s′

[
αs′−t+1(1−α)t−1−αt−1(1−α)s′−t+1]

v(T \{ j1}).

We shorten polynomial (1 − α)s′−2 − αs′−2 by
means of ps′(α) and write v(S′\{ j1}) as a sum of all
values on contained bipersonal coalitions:
∂g1

∂x j1
(α,α) = α(1−α)ps′(α)

[
∑

S⊂S′,S3 j1, |S|=2
v(S)+

∑
T⊆S′\{ j1}, |T |=2

v(T )− v(S′)
]
+

∑
S⊂S′,S3 j1,2<s<s′

[
αs−1(1−α)s′−s+1−αs′−s+1(1−α)s−1]

[
v(S)− v(S\{ j1})

]
.

(11)

It is possible to find coalitions S with S⊂ S′, S3 j1
and 2 < s < s′ only in case s′ ≥ 4. Then, the last sum
in the above expression can be written as

∑
S⊂S′,S3 j1,3≤s<1+s′/2

[
αs−1(1−α)s′−s+1−αs′−s+1(1−α)s−1]

[
v(S)− v(S\{ j1})

]
+

∑
T⊂S′,T3 j1,1+s′/2<t≤s′−1

[
αt−1(1−α)s′−t+1−αs′−t+1(1−α)t−1]

[
v(T )− v(T \{ j1})

]
,

where case s = 1+ s′/2 is not considered, since only
for s′ even number, cardinality of S can take value
s = 1 + s′/2 but, in this case, coefficient αs−1(1−
α)s′−s+1 − αs′−s+1(1− α)s−1 vanish. In the above
sums, we can identify coalitions S for 3≤ s< 1+s′/2
with coalitions T for 1+ s′/2 < t ≤ s′− 1 by means
relation t = s′− s+2. Then, both sums reduce to

∑
3≤s<1+s′/2

[
αs−1(1−α)s′−s+1−αs′−s+1(1−α)s−1]

{
∑

S⊂S′,S3 j1, |S|=s

[
v(S)− v(S\{ j1})

]
−

∑
T⊂S′,T3 j1, |T |=s′−s+2

[
v(T )− v(T \{ j1})

]}
.

Let us suppose that S′ = { j1, j2, . . . , js′}. For a
given cardinality s with 3≤ s < 1+ s′/2, the last dif-
ference of sums vanish, because it can be written as

∑
S⊂S′,S3 j1, |S|=s

[
∑

P⊂S, |P|=2
v(P)− ∑

Q⊆S\{ j1}, |Q|=2
v(Q)

]
−

∑
T⊂S′,T3 j1, |T |=s′−s+2

[
∑

P⊂T, |P|=2
v(P)−

∑
Q⊂T\{ j1}, |Q|=2

v(Q)
]
=

∑
S⊂S′,S3 j1, |S|=s

[
∑

P⊂S,P3 j1, |P|=2
v(P)

]
−

∑
T⊂S′,T3 j1, |T |=s′−s+2

[
∑

P⊂T,P3 j1, |P|=2
v(P)

]
=
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s′

∑
i=2

[(s′−2
s−2

)
−
(

s′−2
s′− s

)]
v({ j1, ji}) = 0.

Thus, from expression (11), we can write the mod-
ified binomial semivalue ψα for player j1 ∈ S′ as

(ψα) j1 [v;BS′ ] =
∂g1

∂x j1
(α,α) =

α(1−α)ps′(α)
[

∑
T⊂S′, |T |=2

v(T )− v(S′)
]
.

Since α = 1/2 is the unique real zero of poly-
nomial ps′ for values s′ ≥ 3 and game v satisfies
inequality (9) for coalition S′, we conclude that
(ψα) j1 [v;BS′ ] 6= 0 for values α ∈ (0,1/2)∪ (1/2,1)
and these modified semivalues separate game v from
the null game.

It only lack to see case in which |S| = n/2 is the
smallest size of coalitions that verify (9). Here, n is
a even number and all coalitions in the second sum
of expression (10) can be grouped by pairs: S and
N \ S. The selected coalition S′ will belong to one or
another half of coalitions with size n/2; we choose
half that contains coalition S′ and describe the second
sum with S and N \ S, as the same way that the first
sum in (10). Then, by repeating the same procedure as
in case |S|< n/2, we arrived at the same conclusion.
�

5 EXPANDED COMMUTATION
GAMES

We denote with DN the vector subspace of all cooper-
ative games in GN inseparable from the null game by
semivalues modified for games with coalition struc-
ture.

Definition 5.1. In GN with |N| ≥ 5, we consider a
commutation game with coalition size 2, vi, j,k,l , k, l ∈
N \{i, j}. The expanded game of commutation game
vi, j,k,l is the sum of all commutation games in GN ,
vP,i, j,k,l , with the same commuted players, i.e.,

ve
i, j,k,l = ∑

P3i, j,P⊆N\{k,l}
vP,i, j,k,l .

Lemma 5.2. In GN with |N| ≥ 5 an expanded com-
mutation game ve

i, j,k,l , k, l ∈N \{i, j}, satisfies the fol-
lowing properties:

(a) ve
i, j,k,l(S) = ve

i, j,k,l(N \S) ∀S⊆ N;

(b) ve
i, j,k,l(S) = ∑T⊂S, |T |=2 ve

i, j,k,l(T ) ∀S ⊆ N and 3 ≤
|S| ≤ |N|;

(c) its MLE is fve
i, j,k,l

= xix j + xkxl− x jxk− xixl .

Proof. It is easy to prove sections (a) and (b); it
suffices to check if players i, j,k, l belong or not to
coalitions S, since the only bipersonal coalitions that
take non-null values in game ve

i, j,k,l are {i, j}, {k, l},
{ j,k} and {i, l}. In order to verify section (c) we can
write MLE of game ve

i, j,k,l as

fve
i, j,k,l

=
[
xix j + xkxl− x jxk− xixl

]
[

∏
q∈N\{i, j,k,l}

(1− xq)+ f∑Q⊆N\{i, j,k,l} 1Q

]
,

where games 1Q are considered in GN\{i, j,k,l}. Since
∑Q⊆N\{i, j,k,l} 1Q(T ) = 1 ∀T ⊆ N \ {i, j,k, l}, T 6= /0,
(Q 6= /0), its MLE equals the unity in N \ {i, j,k, l}
and section (c) follows. �
Proposition 5.3. In spaces of cooperative games GN
with |N| ≥ 5, every expanded commutation game
ve

i, j,k,l , k, l ∈N \{i, j} belongs to vector subspace DN .

Proof. Section (c) in above Lemma proves that
MLE of expanded commutation game ve

i, j,k,l , k, l ∈
N\{i, j} in GN with |N| ≥ 5 agrees with MLE of com-
mutation game vi, j,k,l in a space of cooperative games
with only four players, {i, j,k, l}.

In order to demonstrate that game ve
i, j,k,l , k, l ∈

N \ {i, j}, is inseparable by modified semivalues, we
can consider that players i, j,k, l are distributed in
different coalition blocks in the same way that in
the proof of Proposition 3.3. The remaining players
N \{i, j,k, l}will be distributed in the different blocks
next to players i, j,k, l or they will form new coalition
blocks.

Since variables that correspond to players in N \
{i, j,k, l} does not appear in the MLE of game ve

i, j,k,l ,
when we compute allocations for players i, j,k, l by
means of a product of matrices as in (5), we ob-
tain the same result as in Proposition 3.3, that is,
ψp[ve

i, j,k,l ,B] = 0 for p = i, j,k, l, ∀ψ ∈ Sem(GN), ∀B
coalition structure in N.

For the remaining players, ψq[ve
i, j,k,l ,B] = 0 ∀q ∈

N \{i, j,k, l}, since variable xq does not appear in the
MLE. �
Theorem 5.4. Let us consider vector spaces of coop-
erative games GN with five or more players, |N| ≥ 5.
Then,

(a) dimDN =
(n

2

)
−n;

(b) the vector subspace DN is spanned by expanded
of commutation games with coalition size 2.

Proof. We can see in (Amer et al., 2003) that the
shared kernel CN for |N| ≥ 4 is spanned by 2n−n2 +
n−2 commutation games whose coalitions with non-
null value vary from cardinality s = 2 to n− 2. We
choose the

(n
2

)
−n commutation games with coalition
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size 2. As they are linearly independent in GN , its
expanded games are also linearly independent and, by
above Proposition, inseparable from the null game by
modified semivalues. The linear subspace spanned by
these expanded commutation games is contained in
subspace DN for |N| ≥ 5.

In addition, as DN ⊆ CN , the freedom degrees in
CN by a consequence of conditions (7) for coalitions
with sizes s > n/2 disappear according to necessary
condition of inseparability from the null game in DN :
v(S) = v(N \ S) (Proposition 4.1). Also, the free-
dom degrees for coalitions with size from s = 3 to
s = n/2 disappear according to necessary condition
v(S) = ∑T⊂S, |T |=2 v(T ) ∀S ⊆ N with 3 ≤ |S| ≤ n/2
(Proposition 4.2).

Only the
(n

2

)
−n freedom degrees for coalition size

s = 2 in CN remain in vector subspace DN . Then,
the vector subspace spanned by the

(n
2

)
−n expanded

commutation games agrees with DN . �

6 CONCLUSION

It is known that every cooperative game with two or
three players is separable from the null game by semi-
values, so that dimension for the shared kernel CN is
zero in cases n = 2,3. Consequently, vector subspace
DN is only formed by the null game in cases n = 2,3.
For games with four players, Proposition 3.3 proves
that both separability concepts coincide: DN =CN for
n = 4.

Table 1 compares dimensions of CN and DN for
cooperative games with few players.

Table 1: Dimensions of kernels according to N.

|N|= n 2 3 4 5 6 7 8
dimGN 3 7 15 31 63 127 255
dimCN 0 0 2 10 32 84 198
dimDN 0 0 2 5 9 14 20

For games with five or more players, the intro-
duction of modified semivalues for games with coali-
tion structure allows us to reduce in a significant way
the dimension of the vector subspace of inseparable
games from the null game. According to the linearity
property, separability between two games is reduced
by both concepts of solution to separability of their
difference from the null game. The ability of sep-
aration by semivalues has considerably increased by
introduction of a priori coalition structures.
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Amer, R., Derks, J., and Giménez, J. M. (2003). On cooper-
ative games, inseparable by semivalues. International
Journal of Game Theory, 32:181–188.
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