Pattern Recognition Application in ECG Arrhythmia Classification

Soodeh Nikan, Femida Gwadry-Sridhar, Michael Bauer

Abstract

In this paper, we propose a pattern recognition algorithm for arrhythmia recognition. Irregularity in the electrical activity of the heart (arrhythmia) is one of the leading reasons for sudden cardiac death in the world. Developing automatic computer aided techniques to diagnose this condition with high accuracy can play an important role in aiding cardiologists with decisions. In this work, we apply an adaptive segmentation approach, based on the median value of R-R intervals, on the de-noised ECG signals from the publically available MIT-BIH arrhythmia database and split signal into beat segments. The combination of wavelet transform and uniform one dimensional local binary pattern (1-D LBP) is applied to extract sudden variances and distinctive hidden patterns from ECG beats. Uniform 1-D LBP is not sensitive to noise and is computationally effective. ELM classification is adopted to classify beat segments into five types, based on the ANSI/AAMI EC57:1998 standard recommendation. Our preliminary experimental results show the effectiveness of the proposed algorithm in beat classification with 98.99% accuracy compared to the state of the art approaches.

References

  1. Ahonen, T., Hadid, A., & Pietikainen, M. (2004, May). Face recognition with local binary patterns. in Proceedings of 8th European Conference on Computer Vision (ECCV), Prague, 469-481.
  2. Ebrahimzadeh, A., & Khazaee, A. (2009). An efficient technique for classification of electro-cardiogram signals. Advances in Electrical and Computer Engineering, 9(3), 89-93.
  3. Elhaj, F. A., Salim, N., Harris, A. R., Swee. T. T., & Ahmed, T. (2016). Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Computer Methods and Programs in Biomedicine, 127, 52-63.
  4. Emadi, M., Khalid, M., Yusof, R., & Navabifar, F. (2012). Illumination normalization using 2D wavelet. Procedia Engineering, 41, 854-859.
  5. Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., …, Stanley, H. E. (2000). PhysioBank, PhysioToolkit and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101(23), E215-E220.
  6. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and applications. Neurocomputing, 70(1-3), 489-501.
  7. Inan, O. T., Giovangrandi, L., & Kovacs, G. T. (2006). Robust neural network based classification of premature ventricular contraction using wavelet transform and timing interval feature. IEEE Transactions on Biomedical Engineering, 53(12), 2507-2515.
  8. Jokic, S., Delic, V., Peric, Z., Krco, S., & Sakac, D. (2011). Efficient ECG modeling using polynomial functions. Electronics and Electrical Engineering, 4(110), 121-124.
  9. Kadambe, S., & Srinivasan, P. (2006). Adaptive wavelets for signal classification and compression. International Journal of Electronics and Communications, 60(1), 45-55.
  10. Kaya, Y., Uyar, M., Tekin, R., & Yildirim, S. (2014). 1Dlocal binary pattern based feature extraction for classification of epileptic EEG signals. Applied Mathematics and Computation, 243, 209-219.
  11. Khalaf, A. F., Owis, M. I., & Yassine, I. A. (2015). A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines. Expert Systems with Applications, 42(21), 8361-8368.
  12. Khoshnoud, S., & Ebrahimnezhad, H. (2013). Classification of arrhythmias using linear predictive coefficients and probabilistic neural network. Applied Medical Informatics, 33(3), 55-62.
  13. Korurek, M., & Dogan, B. (2010). ECG beat classification using particle swarm optimization and radial basis function neural network. Expert Systems with Applications, 37(12), 7563-7569.
  14. Martis, R. J., Acharya, U. R., & Min, L. C. (2013a). ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomedical Signal Processing and Control, 8(5), 437-448.
  15. Martis, R. J., Acharya, U. R., Mandana, K. M., Raya, A. K., & Chakraborty, C. (2013b). Cardiac decision making using higher order spectra. Biomedical Signal Processing and Control, 8(2), 193-203.
  16. Moody, G. B., & Mark, R. G. (2001). The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 20(3), 45-50.
  17. Nikan, S., & Ahmadi, M. (2015). Local gradient-based illumination invariant face recognition using LPQ and multi-resolution LBP fusion. IET Image Processing, 9(1), 12-21.
  18. Oster, J., Behar, J., Sayadi, O., Nemati, S., Johnson, A. E., & Clifford, G. D. (2015). Semisupervised ECG ventricular beat classification with novelty detection based on switching kalman filters. IEEE Transactions on Biomedical Engineering, 62(9), 2125-2134.
  19. Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3), 230-236.
  20. Ródenas, J., García M., Alcaraz, R., & Rieta, J. J. (2015). Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms. Entropy, 17(9), 6179-6199.
  21. Thomas, M., Das, M. K., & Ari, S. (2015). Automatic ECG arrhythmia classification using dual tree complex wavelet based features. International Journal of Electronics and Communications, 69(4), 715-721.
  22. Yu, S. N., & Chen, Y. H. (2007). Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network. Pattern Recognition Letters, 28(10), 1142-1150.
Download


Paper Citation


in Harvard Style

Nikan S., Gwadry-Sridhar F. and Bauer M. (2017). Pattern Recognition Application in ECG Arrhythmia Classification . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2017) ISBN 978-989-758-213-4, pages 48-56. DOI: 10.5220/0006116300480056


in Bibtex Style

@conference{healthinf17,
author={Soodeh Nikan and Femida Gwadry-Sridhar and Michael Bauer},
title={Pattern Recognition Application in ECG Arrhythmia Classification},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2017)},
year={2017},
pages={48-56},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006116300480056},
isbn={978-989-758-213-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2017)
TI - Pattern Recognition Application in ECG Arrhythmia Classification
SN - 978-989-758-213-4
AU - Nikan S.
AU - Gwadry-Sridhar F.
AU - Bauer M.
PY - 2017
SP - 48
EP - 56
DO - 10.5220/0006116300480056