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Abstract: We propose a method that restores a temporal image sequence, which describes how a scene temporally
changed during the exposure period, from a given still image captured by a correlation image sensor (CIS).
The restored images have higher spatial resolutions than the original still image, and the restored temporal
sequence would be useful for motion analysis in applications such as landmark tracking and video labeling.
The CIS is different from conventional image sensors because each pixel of the CIS can directly measure the
Fourier coefficients of the temporal change of the light intensity observed during the exposure period. Given
a single image captured by the CIS, hence, one can restore the temporal image sequence by computing the
Fourier series of the temporal change of the light strength at each pixel. Through this temporal sequence
restoration, one can also reduce motion blur. The proposed method improves the performance of motion blur
reduction by estimating the Fourier coefficients of the frequencies higher than the measured ones. In this
work, we show that the Fourier coefficients of the higher frequencies can be estimated based on the optical
flow constraint. Some experimental results with images captured by the CIS are demonstrated.

1 INTRODUCTION

Each pixel in a traditional image sensor measures the
temporal integration of light strength over an expo-
sure time. Because of the temporal integration, the
measured pixel value does not contain information
of the temporal change of the light strength gener-
ated during the exposure time. Moving objects or
moving cameras generate the temporal change of the
light strength, but a traditional camera fails to record
this temporal change and hence restoring the tempo-
ral change from a given still image is difficult. In this
article, we propose a method that restores the tempo-
ral image sequence, which describes how the image
temporally changed during the exposure period, from
a given still image captured by a correlation image
sensor (CIS)(Ando et al., 1997)(Ando and Kimachi,
2003)(Wei et al., 2009)(Hontani et al., 2014). Several
methods have been proposed for motion estimation
or for temporal change restoration from a single im-
age mainly because a single still image does not have
enough information for restoring temporal changes.

As described above, the proposed method cap-
tures an image by using a CIS. Each pixel of a CIS

measures not only a temporal integration of the light
strength but also a temporal correlation between the
light strength and a reference temporal signal supplied
from the outside of the CIS to each pixel during an
exposure period. By using sinusoidal functions as the
references, one can measure a set of the Fourier coef-
ficients of the light strength at each pixel. These mea-
surements of the Fourier coefficients include the in-
formation on the temporal change of the light strength
during the exposure period and it was reported that the
CIS made a problem of the optical flow computation
well-posed(Wei et al., 2009). The proposed method
restores the temporal change of the image intensity at
each pixel by using the measured Fourier coefficients:
Just by computing the Fourier series of the tempo-
ral change at each pixel, one can approximately re-
store the temporal change of the image. The method
improves the accuracy of the approximation by us-
ing other information obtained though optical flow
computation. The temporal change approximately re-
stored by the Fourier series is always periodic, but this
is not always true. In other words, if one restores the
temporal change of the light intensity only by using
the Fourier series, the restored light intensity at the
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beginning of the exposure period is always the same
as the intensity at the end of the period. The proposed
method thus improves the accuracy by explicitly esti-
mating the difference between the light intensity at the
beginning and that at the end of the exposure period
through optical flow computation as will be described
later. The proposed method can restore an instanta-
neous image that describes the spatial distribution of
the light intensity on the image sensor corresponding
to an arbitrary point of time during the exposure time.
The restored instantaneous image should have motion
blur less than the given original image. Our proposed
method has strong relationships with methods used
for motion blur reduction. The authors are interested
in the comparison of the performance of the motion
blur reduction between the proposed method and the
other existing methods, but the comparison is out of
the scope of this article. One of the strong points of
the proposed method is that it restores a series of im-
ages with higher spatial resolution, which represents
the temporal change of the images during the shutter
is open. In the next section, we describe methods of
temporal change restoration and of blind motion de-
blurring, which can be interpreted as the restoration of
the instantaneous image that describes the light inten-
sity at some specific point of time during the exposure
period.

2 RELATED WORK

Several methods that can restore the temporal change
of the light strength during the exposure time have
been proposed. To the best of our knowledge, all
those methods employ an active sensing strategy:
A coded light, which is synchronized with the tim-
ing of the camera shutter, is used when a still im-
age is captured and the temporal change of the light
strength is decoded by a temporal high-frequency pat-
tern of the shutter (Kadambi et al., 2013)(Velten et al.,
2013)(Heide et al., 2013). Such a camera can mea-
sure the depth in realtime and can restore the tempo-
ral change of the light strength during the exposure
time. In contrast to these methods, our method em-
ploys a passive sensing strategy: No encoded light
that is specific to the camera used is required.

From the view point of the passive sensing strat-
egy, the proposed method has strong relationships
with methods for blind motion deblurring. One can
divide the methods of the nonuniform blind deblur-
ring into two classes: In one class, a given image is
captured by a traditional image sensor. In the other
class, a nontraditional sensor is used for capturing
the image. The majority of the methods in the for-

mer class employ a Bayesian framework for remov-
ing motion blurs. These methods combine natural
image priors(Levin, 2006)(Fergus et al., 2006)(Shan
et al., 2008)(Cho and Lee, 2009)(Cai et al., 2012)(Xu
et al., 2013)(Deshpande and Patnaik, 2014), blurring
kernel priors(Jia, 2007)(Shan et al., 2008)(Cho and
Lee, 2009)(Xu and Jia, 2010)(Cai et al., 2012)(Xu
et al., 2013), or models of motions(Jia, 2007)(Shan
et al., 2007)(Whyte et al., 2012), and optimization
techniques to recover both the blurring kernel and the
deblurred latent image simultaneously.

The natural image priors include distribution mod-
els of spatial gradient magnitudes(Field, 1994)(Fer-
gus et al., 2006)(Shan et al., 2008) and sparse rep-
resentations based on local appearances(Deshpande
and Patnaik, 2014) or on the gradients(Shan et al.,
2008)(Xu and Jia, 2010)(Cai et al., 2012). The
blurring kernel priors play important roles especially
when the motion blurs result from camera shakes.
For example, a motion density function(Gupta et al.,
2010), spatially sparse local filter(Fergus et al., 2006),
camera geometry model(Whyte et al., 2012), and
framelet-based sparse representation(Cai et al., 2012)
are introduced as the kernel priors. Object motion
estimation is useful for removing motion blurs(Jia,
2007), and a parametric motion descriptor(Shan et al.,
2007) is used for the estimation from a single given
image. The proposed method also estimates optical
flow from a single given image and uses it for remov-
ing motion blurs.

In the former class, nontraditional image sensors
are used for obtaining the additional information use-
ful for motion deblurring. Hybrid cameras(Nayar and
Ben-Ezra, 2004)(Tai et al., 2010), which detect cam-
era motion using data from a video camera attached
to a still camera, are used for motion deblurring. In-
ertial measurement sensors are also used for the esti-
mation of camera motion(Joshi et al., 2010). Among
the methods in this class, the proposed method is most
similar to the motion deblurring methods using coded
exposure photography(Raskar et al., 2006)(Agrawal
and Raskar, 2009)(McCloskey et al., 2012). Control-
ling the camera’s shutter open and close during the ex-
posure period with a binary pseudo-random sequence,
one obtains a broad-band motion blurring kernel that
preserves high-frequency spatial details. Combining
the estimation of objects’ motions, one can estimate
the blurring kernel and compute the latent nonblurred
image by deconvoluving the given motion blurred im-
age with the estimated kernel.

In coded exposure photography, the camera en-
codes the temporal change of incident light strength
at each pixel during the exposure period with the bi-
nary pseudo-random shutter pattern. A CIS used in
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the proposed method, on the other hand, encodes the
temporal change with analog sinusoidal reference sig-
nals. As will be described later, a CIS has three chan-
nels each of which encodes the temporal change with
a different reference signal and makes the problem of
optical flow computation well-posed. The proposed
method first computes the optical flow of a given sin-
gle image and then uses the optical flow for restoring
higher frequency components of the temporal change
of the light strength during the exposure period.

The contributions of this study are as follows: (1)
A completely passive method is proposed for restor-
ing the temporal change of the light strength during
the exposure period from a single still image captured
by a CIS, (2) To improve the quality of the restored
images, a method is proposed for computing the tem-
poral frequency components that are higher than those
of the reference signals, and (3) It is shown that the
restoration can reduce motion blur.

3 CORRELATION IMAGE
SENSOR (CIS)

Let exposure time be denoted by T and let the time
during which the shutter is open be denoted by t,
where 0 ≤ t ≤ T . Let the coordinates on an image
sensor be denoted by x = (x,y)ᵀ and let f (t,x) denote
the strength of the incident light that comes from the
lens system to the pixel at location x at time t. The
location variable, x, is often omitted as f (t) = f (t,x)
when the location is clearly known from the context.

The CIS used in this study has three channels and
a pixel value of the s-th channel (s∈ {1,2,3}) denotes
the temporal correlation between the light strength,
f (t,x), and a reference signal, rs(t), which is supplied
from the outside of the CIS to all pixels as

Is(x) =
∫ T

0
f (t,x)rs(t)dt.

Let rs(t) = cos(nω0t + 2(s − 1)π/3) + 1/3 where
ω0 = 2π/T and n ∈ Z. Then, we can mea-
sure the following three values at each pixel si-
multaneously(Ando et al., 1997)(Ando and Kimachi,
2003)(Wei et al., 2009) as follows:

g0(x) =
1
T

∫ T

0
f (t,x)dt, (1)

gn,R (x) =
1
T

∫ T

0
f (t,x)cos(nω0t)dt, (2)

and

gn,I (x) =
1
T

∫ T

0
f (t,x)sin(nω0t)dt, (3)

where gn,R (x) and gn,I (x) are the real and imaginary
parts of a complex Fourier coefficient gn that corre-
sponds to the frequency n/T . It should be noted that
no image sensor can measure the light strength f (t,x)
directly and traditional image sensors can measure
only g0(x). In this manuscript, we set n = 1 and a CIS
sensor measures g0(x) and g1(x)= g1,R (x)+ jg1,I (x),
where j is the unit imaginary number.

3.1 Optical Flow Computation with a
CIS

We can compute an optical flow v(x)= (vx(x),vy(x))ᵀ
from a single image measured by the CIS. In the com-
putation, we assume that the light strength arriving
from each point of an object is invariant with respect
to time and that the following equation is satisfied
when the shutter is open, t ∈ [0,T ]:

d
dt

f (t,x) =
(

vx
∂
∂x

+ vy
∂
∂y

+
∂
∂t

)
f (t,x) = 0. (4)

Integrating (4) over the exposure time with a weight
e− jnω0t/T where n∈Z, we obtain the following equa-
tion:

0 =
1
T

∫ T

0

(
vx

∂
∂x

+ vy
∂
∂y

+
∂
∂t

)
f (t,x)e− jnω0t dt

=
1
T

∫ T

0

(
vx

∂
∂x

+ vy
∂
∂y

)
f (t,x)e− jnω0t +

∂
∂t

f (t,x)e jnω0t dt

=

(
vx

∂
∂x

+ vy
∂
∂y

)
gn(x)

+
1
T

{
[ f (t,x)e jnω0t ]T0 + jnω0

∫ T

0
f (t,x)e jnω0t dt

}

=

(
vx

∂
∂x

+ vy
∂
∂y

)
gn(x)+F0(x)+ jnω0gn(x),

(5)

where gn(x) is an image of the Fourier coefficients of
temporal signals f (t,x) such that

gn(x) =
1
T

∫ T

0
f (t,x)e− jnω0tdt (6)

and F0 denotes the difference of the boundary val-
ues such that F0(x) = [ f (t,x)]T0 /T = { f (T,x) −
f (0,x)}/T .

As described above, a CIS can measure both g0(x)
and g1(x) at each pixel. Substituting n = 0 and n = 1
to (5), we obtain two different equations. Eliminat-
ing the variable F0 from these two equations, we can
derive a linear complex equation as follows:(

vx
∂
∂x

+ vy
∂
∂y

)
{g1(x)−g0(x)}+ jω0g1(x) = 0.

(7)
Equation (7) consists of two real coefficient equations
and we can derive the following linear equation of v:

Av = d, (8)
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where d = [ω0g1,I ,−ω0g1,R ]T and

A =

[
∂x{g1,R +g0} ∂y{g1,R +g0}

∂xg1,I ∂yg1,I

]
. (9)

One can estimate v(x) by solving the linear equation
shown in (8). It should be noted that the problem of
optical flow computation is well-posed when one cap-
tures images with a CIS though the problem is ill-
posed when one captures images with a traditional
image sensor. The added measurements, gn(x), can
introduce extra information that constrains the solu-
tion.

Substituting n = 0 and n = 1 to (5), we obtain the
following two equations:

(
vx

∂
∂x

+ vy
∂
∂y

)
g0(x)+F0(x) = 0, (10)

(
vx

∂
∂x

+ vy
∂
∂y

)
g1,R (x)+F0(x)−ω0g1,I = 0. (11)

Solving the system of linear equations (10) and (11),
we can obtain the following equation.

F0(x) = −1
2

(
vx

∂
∂x

+ vy
∂
∂y

)
(g1,R (x)+g0(x))

+
ω0

2
g1,I (x). (12)

Once we compute the flow v(x), the difference of the
boundary values F0(x) can be estimated by solving
(12). The values, vx, vy, and F0, computed at each
pixel are used in the restoration process described in
the next section.

4 RESTORATION OF
TEMPORAL CHANGE OF
LIGHT STRENGTH DURING
EXPOSURE PERIOD

The objective is to restore the temporal change of the
strength of light strength, f (t,x) (0 ≤ t ≤ T ), at each
pixel from the measurements, g0(x) and g1(x), ob-
tained by a CIS. It is not difficult to approximately
restore f (t,x) by using the N-th order Fourier series
expansion of f (t) = f (t,x) (N ∈ N) such that

f̃N(t) =
N

∑
n=−N

gne jnω0t , (13)

where gn (n ∈ Z) are the Fourier coefficients as de-
fined in (6). As g−n = g∗n holds when f (t) is a real
function, the original signal f (t) can be approximated

by using the Fourier coefficients g0 and g1 measured
by a CIS as follows:

f̃1(t) =
1

∑
n=−1

gne jnω0t = g0 +2Re[g1e jω0t ], (14)

where Re[c] denotes the real part of a complex num-
ber c. The proposed method restores f (t) by improv-
ing the approximation f̃1(t) by restoring (i) the differ-
ence of the boundary values f (T )− f (0), and (ii) the
higher frequency components gn (n > 1) that are not
measured by the CIS.

4.1 Restoration of Boundary Values

f̃N(0) and f̃N(T ) approximate f (0) and f (T ) inaccu-
rately in general. f̃N(0) = f̃N(T ) always holds be-
cause f̃N(t) shown in (13) is a linear combination
of e jnω0t (n = 0,1, . . . ,N) that are all periodic func-
tions with period T . It leads to F̃0(x) = { f̃N(T )−
f̃N(0)}/T = 0, which is not always consistent with
the true value of F0. The value of f̃N(t) changes ex-
tremely rapidly near the boundaries t = 0 and t = T .
The left panel of Fig.1 shows examples of the signals
restored by gn (n= 1,2, . . .). A true and unobservable
signal f (t), where f (T ) ̸= f (0), is shown at the top of
Fig.1. As N increases, the resultant f̃N(t) converges to
the original one, but we can notice that f̃N(T )= f̃N(0)
is always satisfied and can see the rapid change near
the measurement boundaries t = 0 and t = T .

The proposed method compensates for the rapid
changes by adding a new function s(t) to f̃N(t) so that
the resultant function f̂N(t) = f̃N(t)+ s(t) is consis-
tent with the value of F0 estimated by using (12) and
with the Fourier coefficients gn(x) that are measured
(or would be computed) from f (t,x). The consistency
with respect to the Fourier coefficients requires s(t) to
satisfy the following equation:

∫ T

0
f̃N(t)e− jnω0tdt =

∫ T

0
f̂N(t)e− jnω0tdt. (15)

This leads to
∫ T

0
s(t)e− jnω0tdt = 0. (16)

Substituting n = 0, we notice that s(t) must be anti-
symmetric with respect to the reflection at the center
time of the exposure period t = T/2. Among the anti-
symmetric functions, we select the following equation
because it is consistent with the value of F0:

s(t) = sN(t) = F0
(t −T/2)+∑N

n=1 an sin(nω0t)
T

,

(17)
which always satisfies sN(T )− sN(0) = F0. The coef-
ficients proposed in (17), an, are scalar and their val-
ues should be determined so that f̂N(t) is consistent
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Figure 1: Examples of the approximations. An original signal f (t), the Fourier approximations f̃N(t) shown in (13), and the
modified approximation f̂N(t) in (19) are indicated.
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Figure 2: (A) A graph of H0 along the direction of v. (B) Graphs of H0 (black), H1 (red), and H∗
1 (red). H1 improves the

bandwidth of the resultant filter (blue).

with gn (n ≥ 1). Solving (16) with respect to an, we
get

an =
2

nω0
, (n = 1,2, . . . ,N). (18)

As a result, the proposed method restores the latent
image by using the following equation:

f̂N(t,x) = g0(x)+2
N

∑
n=1

Re[gn(x)e jnω0t ]

+
F0

T

(
(t −T/2)+

N

∑
n=1

2
nω0

sin(nω0t)

)
.

(19)

(a) and (c) of Fig.1 show examples of f̂N(t) that ap-
proximate f (t), which is a step function in this exam-
ple. Comparing (b) and (d) of Fig.1 respectively, we
observe that the rapid changes near the measurement
boundaries are suppressed.

4.2 Restoration of Higher Frequency
Components

The number of channels of a CIS is limited to three
and we use them for measuring the lower temporal
frequency components of f (t). Restoring the higher
temporal frequency components of f (t,x), one can re-
store higher spatial frequency components of f (t,x)
and can deblur the motion-blurred gray-scale image
g0(x) more crisply. As will be described later, one can

restore the higher temporal frequency components of
f (t,x) by using (5). Before the restoration algorithm
is described, the relationships between the temporal
frequencies of f (t) = f (t,x) and the spatial frequen-
cies of gn(x) are discussed.

4.2.1 Spatial Motion Blur in Fourier Coefficient
Image

Let the velocity of a moving target in an image be
denoted by v = (vx,vy)

ᵀ = v(cosθ,sinθ)ᵀ, where v
denotes the speed and θ denotes the angle between
v and the x-axis. The motion blur generated on
the gray-scale image g0(x) by the target motion can
be represented by a spatial convolution with a one-
dimensional box filter h0(x) that averages the inten-
sities along a line segment of length vT , which is a
trajectory of the moving target:

g0(x) = f (x)∗h0(x), (20)

where ∗ denotes a spatial convolution,

h0(x) =
1

vT
rect

(
xcosθ+ ysinθ

vT

)
δ(vᵀ⊥x), (21)

v⊥ denotes a unit vector perpendicular to v,

rect(x) =
{

1, if |x| ≤ 1/2,
0, otherwise, (22)

and f (x)= f (t = T/2,x). We fix the time to the center
of the exposure time t = T/2 for avoiding the effects
of the temporal boundaries of the measurements.
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f̄ (1,x) f̄ (15,x) f̄ (30,x)

g0(x) g1,R (x) g1,I (x)

Figure 3: Top: Examples of the still images f̄ (k,x). Bottom: Generated images, g0(x), g1,R (x), and g1,I (x).

A motion blur generated on the complex Fourier
coefficient image gn(x) by the target motion can be
represented by a spatial convolution with a differ-
ent one-dimensional filter hn(x). Let x = vt de-
note the location of the moving target in the image,
where the origin of the coordinate system is tem-
porarily set to the target’s location at t = 0. Then,
multiplying vᵀ from the left, we obtains the equa-
tion t = vᵀx/v2 = (vx cosθ+ vy sinθ)/v. Substituting
this equation and ω0 = 2π/T into the representation
of the reference temporal signal, e jnω0t , we obtain a
spatial filter that corresponds to the reference signal
e2π jn(vx cosθ+vy sinθ)/vT . The profile of this spatial filter
along the trajectory of the moving target is a complex
sinusoidal curve with frequency n/vT . Multiplying
this spatial filter with h0, we get hn(x), where

hn(x) = h0(x)e2π jn(xcosθ+ysinθ)/vT , (23)

and this spatial filter generates the Fourier coefficient
image, gn(x), as given by the following equation:

gn(x) = f (x)∗hn(x). (24)

Let the spatial Fourier transformation of f (x) be
denoted by F(u), where u = (ux,uy)

ᵀ denotes the
two-dimensional spatial frequency and let the Fourier
transformation of f̃1(x) in (14) be denoted by F̃1(u).
We can now derive the following equation from (14)

F̃1(u) = F(u){H0(u)+H1(u)+H∗
1 (−u)} , (25)

where Hn(u) denotes the Fourier transformation of
hn(x) and is given as

Hn(u) = H0(u)∗δ(ux cosθ+uy sinθ+n/vT ), (26)

where ∗ is now a convolution with respect to the
frequencies. The Fourier transformation of the one-

dimensional box filter, h0(x), is given as a sinc func-
tion such that

H0(u) =
sin(π(T vxux +T vyuy))

π(T vxux +T vyuy)
. (27)

Finally, we obtain

Hn(u) =
sin(π(T vxux +T vyuy +n))

π(T vxux +T vyuy +n)
. (28)

Figure 2 shows the profiles of H0 and of H1 along a
line parallel to the motion direction. As shown by the
profile of H0, h0 is a low-pass filter and generates the
spatial motion blur of a moving target in g0(x). The
graph of Hn is obtained by shifting that of H0 by n
toward the motion direction and hn is a band-pass fil-
ter of which the spatial center frequency is n/vT . The
approximation f̂1(x) shown in (19) is computed with
g0 and g1 and the latter measurement g1 improves the
spatial bandwidth by adding the two band-pass filters
H1 and H∗

1 to the low-pass filter H0 as shown in (25).
It should be noted that one can increase the band-

width of the restoration and can obtain crisper images
if one can estimate the higher frequency components
gn(x) (n > 1) and approximates as follows:

f̃N(t,x) =
N

∑
n=−N

gn(x)e jnω0t , (29)

where N ≥ 1. The bandwidth of f̃N(t) is wider than
that of f̃1(t) when N ≥ 1 and the restoration accuracy
is improved by the addition of gn (n≥ 1). The method
for the estimation of gn(x) is described next.

4.2.2 Estimation with Sparsity Regularization

The proposed method estimates gn(x) (n > 1) by us-
ing (5). As mentioned above, the values of vx(x),
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g0(x) f̂3(t = 0) f̂3(t = 7/30) f̂3(t = 15/30) f̂3(t = 22/30)

g0(x) v(x) F0(x) f̂3(t = 0) f̂3(t = T/3) f̂3(t = 2T/3)

Figure 4: Top row: g0(x) artificially generated from M = 30 still images shown in Fig.3 and f̂3(t,x) for each t. The Second to
Bottom rows: g0(x) measured by a CIS and the results, v(x), F0(x), and f̂3(t,x), computed from the images captured by the
CIS.

vy(x), and F0(x) can be estimated by using the mea-
sured values of g0(x) and g1(x). No other measure-
ments are needed for the estimation. Once these val-
ues are estimated, gn(x) is the only unknown variable
in the linear complex equation shown in (5) and one
can estimate its value by solving the equation.

These estimated values, though, can be inaccurate
especially when the differential equation (5) does not
hold as some irregular events like occlusions or spec-
ular reflections occur. We need a robust estimation
method that automatically detects and excludes data
that do not obey an employed model. Assuming that
the regions in which the equation (5) does not hold
are sparse in a given image, the proposed method uses
a regularization technique proposed in (Ayvaci et al.,
2012) for making the estimation robust against such
irregulars.

Let e(x) denote a residual of the right hand side of
(5) defined as

e(x) .
=

(
vx

∂
∂x

+ vy
∂
∂y

)
gn(x)+F0(x)+ jnω0gn(x).

(30)

Let D denote the entire image domain and let Ω de-
note subregions in D in which (5) does not hold. We
assume that the residual e(x) obeys a normal distribu-
tion with zero mean and small variance, if x ∈ D\Ω,
where (5) is satisfied. If x ∈ Ω, on the other hand,
(5) is not satisfied and the residual, e(x), can have an
arbitrary value, ρ(x).

Let e(x) = e1(x)+ e2(x) such that

e1(x) =
{

ρ(x), x ∈ Ω,
0, x ∈ D\Ω,

(31)

and

e2(x) =
{

0, x ∈ Ω,
N (x), x ∈ D\Ω,

(32)

where N denotes a variable that obeys the normal dis-
tribution. Then, e1 is large and sparse, and e2 is small
and dense. Based on the discussion above, the pro-
posed method minimizes the following cost function:

Jn(gn,e1) = ∥e2∥L2(D)+α∥e1∥L1 +β∥gn(x)∥L2 ,

= ∥(vᵀ∇)gn +F0 + jnω0gn − e1∥L2(D)

+ α∥e1∥L1 +β∥gn∥L2 (33)
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Figure 5: Left Panel: The location of three pixels indicated by three dots (yellow (xleft), red (xmiddle). Right Panel: Examples
of f (t = (k−1)/M) (left column), f̂N=1(t) (middle column), and f̂N=3(t) (right column) at the three pixels.

where α and β are positive scalar coefficients for the
regularization terms and their values are experimen-
tally determined. Jn(gn,e1) is convex with respect to
gn and e1 when v and F0 are fixed and then one can
obtain the unique solution of gn(x) and e1(x).

5 EXPERIMENTAL RESULTS

The performance was evaluated with sets of simulated
data and with images captured by a CIS.

5.1 Experiments with Simulated Data

Sets of M still images of a stationary scene,
{ f̄ (k,x)|k = 1,2, . . . ,M}, were captured by a slowly
translating traditional camera for simulating f (t,x)
(0 ≤ t < 1) and artificially generated g0(x) and g1(x)
from each of the sets as follows:

g0(x) =
1
M

M

∑
k=1

f̄ (k,x), (34)

g1,R (x) =
1
M

M

∑
k=1

f̄ (k,x)cos(2π(k−1)/M),(35)

g1,I (x) =
1
M

M

∑
k=1

f̄ (k,x)sin(2π(k−1)/M). (36)

Figure 3 shows examples of f̄ (k,x) (M = 30) and
the corresponding g0(x) and g1(x). One can see

the motion blurs in g0(x). The top row in Fig. 4
shows g0(x) again and some restored latent images,
f̂3((k − 1)/M,x) (k = 0,7,15,22). Comparing with
g0(x) shown in the left, we can see that the proposed
method suppressed the motion blur in g0(x) and re-
stored the temporal change of the light strength during
the exposure time by computing f̂3(t,x). Examples of
the true signal f (t = (k − 1)/M,x) and the restored
signals f̂N(t,x) at three neighboring pixels are shown
in Fig.5. The locations of the three pixels are shown
at the left panel in the figure. They were located near
the right boundary of a tree, which moved toward the
right. The left column in the right panel shows the true
profiles of f (t,x) at the three points xleft, xmiddle, and
xright. The value of f decreased rapidly when the tree,
which moved from left to right in the image, reached
to each pixel. The graphs in the middle column and in
the right column show the restored temporal change
of the light strength at each pixel with N = 1 (mid-
dle column) and with N = 3 (right column) as shown
in (19), respectively. The latent true signals f (t,x) in
the left column were smooth enough and no higher
frequency components were required for describing
the true signal. Hence, f̂1(t,x), which consists of only
lower frequency components, approximated the latent
signal more accurately than f̂3(t,x), in which one can
see some artifacts like aliasing. It is included in our
future works to adaptively determine the appropriate
value of N in (19) for each pixel.

VISAPP 2017 - International Conference on Computer Vision Theory and Applications

188



g0(x) f̂3(t = 0,x) f̂3(T/3,x) f̂3(2T/3,x)
Figure 6: Enlarged parts of the images shown in Fig.4

5.2 Experiments with Images Captured
by a CIS

A set of images was captured by the CIS, and the im-
age size was 512× 704, with the exposure time set
as T = 1/30 s. Examples of g0(x) are shown at the
leftmost panels in the second to bottom rows of Fig.4.
Firstly, solving the linear equation (8), we computed
the flow v, and the difference of the boundary values
F0(x) for each image. Examples of the obtained re-
sults are shown in Fig.4. As shown, F0(v) had nonzero
values around the regions corresponding to the mo-
tion blurs. Then, minimizing J(gn,e1) in (33), the
method computed gn(x) (n = 2,3) and e1. Using the
estimated values of gn (n = 2,3) with the measured
values, g0 and g1, the method restored images f̂3(t,x)
as shown in the middle and the bottom rows in Fig.4.
Enlarged parts of the images, g0(x) and f̂3(t,x), are
shown in Fig.6. Comparing with g0(x) at the leftmost
panel, we can see that the restored images include less

motion blurs.

6 SUMMARY AND FUTURE
WORK

We proposed a CIS-based method that removes mo-
tion blurs from a single image and restores the la-
tent temporal images, which represent the temporal
change of the light strength during the exposure pe-
riod. We believe that our proposed method would
largely improve the stability and accuracy of motion
analysis including landmark tracking or optical flow
computation that are crucial in medical image analy-
sis.

One advantage of the proposed method is found
especially in the restoration of the latent temporal im-
ages. The restoration of the temporal change of the
light strength during the exposure time from a single
given image is very difficult when the image is cap-
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tured with a traditional image sensor. On the other
hand, a CIS modulates the temporal change of the
light strength at each pixel with the sinusoidal refer-
ence signals and records the temporal change with its
Fourier coefficients. Using these coefficients, one can
compute optical flow, v(x), and the difference of the
boundary values, F0(x), from a single image captured
by a CIS. Once one obtains v(x) and F0(x), one can
restore the higher temporal frequency components,
gn(x) (n ≥ 2), based mainly on the optical flow con-
straint, which represents the temporal invariance of
the strength of an incident light coming from an ob-
ject point.

The biggest limitation of the proposed method is
that the optical flow constraint (5) used in the pro-
posed method assumes that a flow observed at each
pixel, v(x), is constant with respect to time during
the exposure time. This is not true especially when
the motion blurs are generated with a high-frequency
motion such as a hand shake. Many blind motion de-
blurring methods can estimate spatial blurring kernels
from a single blurred image by introducing the prior
knowledge on natural images and/or on kernels. The
future works would include the use of the strategies
employed by those blind motion deblurring methods
for estimating the spatial blurring kernels that are con-
sistent not only with the blurred image g0(x) but also
with the Fourier coefficient image, g1(x), so that one
can restore more accurate and crisp images that rep-
resent the temporal change during the exposure time.
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