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Abstract: White-box cryptography is a software obfuscation technique for cryptography implementation. It can protect
the secret key even if an attacker has full access and control over the cryptosystem implementation and its
execution platform. There have been several proposals for a white-box implementation of cryptography. We
propose a white-box implementation of a stream cipher that can achieve the same asymptotic performance as
the standard implementation. Our black-box implementation of KCipher-2 achieves low storage consumption
of no more than 2 megabytes and is suitable for a PC, tablet, and smartphone. On the other hand, we can
achieve space hard implementation to protect against a code-lifting attack. Furthermore, the implementation
can protect against black-box attacks and a BGE attack.

1 INTRODUCTION

The conventional threats to a secret key cryptosys-
tem are considered in a black-box model. In this
model, an attacker cannot obtain the information on
the cryptosystem implementation. Thus, the attacker
can obtain no information on the cryptographic pro-
cess as long as the secret key is securely managed in
the endpoints. Kocher (Kocher, 1996) has proposed a
side-channel attack against implementation of Diffie-
Hellman, RSA, and DSS, and this has led to the con-
cept of a grey-box model. By means of this model, an
attacker can obtain side-channel information on the
execution process of the cryptosystem such as power
consumption, electromagnetic radiation, and execu-
tion time. Chow et al. (Chow et al., 2003a; Chow
et al., 2003b) have proposed white-box implementa-
tions of AES and DES. These implementations as-
sume a white-box model where an attacker has full
access and control over the implementation and its ex-
ecution platform.

Software obfuscation transforms a program into
an obfuscated one, which is hard to analyze while pre-
serving its functionality. Practical software obfusca-
tion techniques can be classified into two categories:
data obfuscation and control obfuscation. Data obfus-
cation changes the data structures in software. Coll-
berg et al. (Collberg et al., 1997) proposed change en-
coding that encodes variables with a linear function.
The data obfuscation techniques can transform the se-

cret key embedded in software. Control obfuscation
changes the control flow in software. The control ob-
fuscation technique can protect the secret key against
static analysis. For example, we transform data in
software to a function and apply a control obfuscation
technique to protect the function.

However, Barak et al. (Barak et al., 2001) showed
the existence of functions that cannot be obfuscated.
They prove that no obfuscator satisfies the virtual
black box property that is, there is no obfuscator O,
such that for any program P, anything that can be ef-
ficiently computed from O(P) can be efficiently com-
puted given oracle access to P. Subsequently, the
impossibility of software obfuscation have been pub-
lished (Goldwasser and Kalai, 2005; Goldwasser and
Rothblum, 2007; Hofheinz et al., 2007; Hada and
Sakurai, 2007), and it is difficult for software imple-
mentations achieve black-box security.

Security based on the white-box model is, there-
fore, desirable for various services in the real world.
A digital rights management (DRM) system allows
a legitimate user to use content. The media player
for the authorized user embeds the secret key for the
user. However, the DRM system will be broken if
an attacker can extract the secret key from the cryp-
tosystem implementation in the media player. The at-
tacker can use various reverse-engineering tools such
as a network monitoring tool, disassembler, debugger,
emulator and hexadecimal editor.

In this paper, we propose a white-box implemen-
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tation of a stream cipher. Our implementation can
achieve the same performance as keystream output of
a standard implementation while not imposing an un-
reasonable level of overhead on the key initialization
process.

2 RELATED WORK

White-box Cryptography and Attacks. Chow et
al. devised the concept of white-box cryptography,
and they proposed a white-box implementation of
AES (Chow et al., 2003b) and DES (Chow et al.,
2003a). Billet et al. (Billet et al., 2005; Muir, 2013)
proposed a BGE attack against the white-box imple-
mentation of AES by Chow et al. The BGE attack
extracts the entire AES secret key embedded in the
white-box implementation.

Xiao and Lai (Xiao and Lai, 2009) proposed a new
white-box AES implementation which is claimed to
be resistant to a BGE attack. Mulder et al. (Mulder
et al., 2013) showed that a practical cryptanalysis can
be applied to their white-box implementation. Their
attack uses a modified variant of the linear equiva-
lence algorithm.

Bringer et al. (Bringer et al., 2006a) proposed a
way to conceal the algebraic structure of a traceable
block cipher by adding perturbations to its descrip-
tion. Then, they proposed a white-box implementa-
tion for AEw/oS (Bringer et al., 2006b) that is a vari-
ant of the AES block cipher where the S-boxes are
part of the key and unknown to the adversary. Mul-
der (Mulder et al., 2010) developed a cryptanalysis
of the perturbated white-box AEw/oS implementation
that can be extended to perturbated white-box AES
implementations.

Karroumi (Karroumi, 2010) proposed new white-
box implementation based on dual ciphers of AES.
However, Klinec (Klinec, 2013) showed that this im-
plementation can be broken with the same time com-
plexity as the white-box implementation of AES. Bos
et al. (Bos et al., 2015) demonstrated that publicly
available white-box implementations cannot protect
against the differential computation analysis (DCA)
technique and the attack can extract the secret key
within seconds.

White-box Implementation Towards Probable Se-
curity. Sasdrich et al. (Sasdrich et al., 2016) pro-
posed a white-box implementation of AES on recon-
figurable hardware assuming a gray-box attacker who
can execute side-channel analysis including a differ-
ential computational analysis attack and differential
power analysis attack. Cho et al. (Cho et al., 2016)

proposes a new class of encryption scheme, hybrid
WBC, that can protect against their threat model and
achieve reasonable performance 1.3 times slower than
AES.

Biryukov et al. (Biryukov et al., 2014) designed
several encryption schemes based on the ASASA
structure ranging based on general affine transforma-
tions combined with specially designed low degree
non-linear layers. Bogdanov and Isobe (Bogdanov
and Isobe, 2015) proposed a family of white-box se-
cure block ciphers SPACE and introduced the notion
of space hardness to protect against a code-lifting at-
tack.

Saxena et al. (Saxena et al., 2009) defined secu-
rity notions for white-box cryptography. Fouque et
al. (Fouque et al., 2016) proposed white-box primi-
tives offering provable security guarantees and con-
crete instantiations for their construction with low
overhead.

3 KCipher-2

KCipher-2 was proposed by Kiyomoto et al. (Kiy-
omoto et al., 2007) and has a similar structure to
SNOW-family stream ciphers. KCipher-2 consists of
two feedback shift registers (FSRs) FSR-A and FSR-
B, and a non-linear function with four internal regis-
ters as shown in Fig. 1. The dotted lines show the
paths of one-bit variables which determine a multipli-
cation.

3.1 Non-linear Function

The non-linear function of KCipher-2 has internal
registers R1, R2, L1, L2. The values of two registers
of FSR-A and four registers of FSR-B are fed into the
non-linear function, and a 64-bit keystream is gener-
ated from a non-linear function every cycle. Figure 1
shows the non-linear function of KCipher-2. The non-
linear function includes four substitution steps that are
indicated by Sub.

The Sub step divides the 32-bit input string into
four 1-byte strings and applies a non-linear permu-
tation to each byte using an 8-to-8 bit substitution,
and then applies a 32-to-32 bit linear permutation.
The 8-to-8 bit substitution is the same as s-boxes of
AES (Daemen and Rijmen, 2002), and the permuta-
tion is the same as the AES MixColumn operation.

3.2 Keystream Output

Let keystream at time t be Z(t) = (ZH(t),ZL(t)), where
ZH(t) is a higher 32-bit keystream, and ZL(t) is a
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Figure 1: KCipher-2 Stream Cipher.

lower 32-bit keystream. The keystream is calculated
as follows:

ZL(t) = B(t)
0 �R2(t)⊕R1(t)⊕A(t)

4 ,

ZH(t) = B(t)
10 �L2(t)⊕L1(t)⊕A(t)

0 ,

where A(t)
x and B(t)

x denote outputs of FSR-A and
FSR-B at position x and time t and R1(t), R2(t), L1(t),
and L2(t) denote the internal registers at time t. The
symbol⊕ denotes a 32-bit exclusive-or and � denotes
a 32-bit addition. Finally, the internal registers are up-
dated as follows:

R1(t+1) = Sub(L2(t)�B(t)
9 ), R2(t+1) = Sub(R1(t)),

L1(t+1) = Sub(R2(t)�B(t)
4 ), L2(t+1) = Sub(L1(t)).

3.3 Key Initialization Process

The initial internal state is generated from a 128-bit
initial key and a 128-bit initial vector (IV) using the
key scheduling algorithm. The key scheduling algo-
rithm is similar to the round key generation function
of AES, and the algorithm extends the 128-bit initial
key to 384 bits. The key scheduling algorithm is de-
scribed as:

Ki =





IKi (0≤ i≤ 3)
Ki−4⊕Sub((Ki−1� 8)⊕
(Ki−1� 24))⊕Rcon[i/4−1] (i = 4n)

Ki−4⊕Ki−1 (i 6= 4n)

,

where IK = (IK0, IK1, IK2, IK3) is the initial key and
0 ≤ i ≤ 11. The function Sub in the key scheduling
algorithm is the same as that in the non-linear func-
tion. This function is different from the round key
generation function of AES, while the other part of
the key scheduling algorithm is the same as the AES
round key generation. Rcon[i] denotes the round con-
stant word array in AES. The internal state is initial-
ized with Ki and IV = (IV0, IV1, IV2, IV3) as follows;

A0 = K4, A1 = K3, A2 = K2, A3 = K1,

A4 = K0, B0 = K10, B1 = K11, B2 = IV0,

B3 = IV1, B4 = K8, B5 = K9, B6 = IV2,

B7 = IV3, B8 = K7, B9 = K5, B10 = K6.

The internal registers, R1, R2, L1, and L2 are set to 0.
After the above processes, the cipher clocks 24 times
(1≤ t ≤ 24), updating the internal states as follows;

A(t+1)
i =

{
A(t)

i+1 (0≤ i≤ 3)
α0 ·A(t)

0 ⊕A(t)
3 ⊕ZL(t) (i = 4)

,

B(t+1)
i =





B(t)
i+1 (0≤ i≤ 9)

f (A(t)
2 ) ·B(t)

0 ⊕B(t)
1 ⊕B(t)

6

⊕g(A(t)
2 ) ·B(t)

8 ⊕ZH(t) (i = 10)

.

The f and g are dynamic feedback controller func-
tions defined as;

f (A(t)
2 ) =

{
α1 (A(t)

2 [30] = 1)
α2 (A(t)

2 [30] = 0)
,

g(A(t)
2 ) =

{
α3 (A(t)

2 [31] = 1)
1 (A(t)

2 [31] = 0)
,

and α0, α1, α2, α3 are constants in GF(232).

4 PROPOSED METHOD

We propose a white-box implementation for stream
ciphers. Figure 2 shows the overview. The white-box
implementation calculates initialized internal states
using look-up tables (LUTs) in which the secret key
is embedded. Once the implementation completes the
key initialization process, it outputs keystream in ex-
actly the same way as the standard implementation.
Thus, our implementation imposes no overhead on the
keystream output process.

An attacker can obtain the initialized internal
states in the white-box implementation. The key ini-
tialization process must be noninvertible so that the
attacker cannot calculate the key and IV from the ini-
tialized internal states.

White-box Implementation of Stream Cipher
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Figure 2: White-Box Implementation of Stream Cipher.

Figure 3: 32-bit Addition.

We show the white-box implementation of
KCipher-2. The key initialization process of
KCipher-2 is proved to be noninvertible. We can
thus apply our proposed implementation to KCipher-
2. Section 4.1 shows that all of the basic operations
in the initialized process in KCipher-2 can be imple-
mented using LUTs. We show the entire white-box
implementation of KCipher-2 in Sect. 4.2.

4.1 Basic Operations

The key initialization process of KCipher-2 uses 32-
bit exclusive-or, 32-bit addition, multiplication over
GF(232), 32-bit Sub function and dynamic feedback
controller function f and g. We implement these op-
erations using four-bitwise operation based on LUTs.
The dynamic feedback controller functions can be im-
plemented using multiplication over GF(232) and a
32-bit multiplexer.

32-bit Exclusive-OR. The 32-bit exclusive-or can
be implemented using eight 8-bit to 4-bit LUTs.

32-bit Addition. The 32-bit addition can be imple-
mented using eight LUTs for 4-bit addition. The LUT
has 9-bit input and 5-bit output to handle carries. Fig-
ure 3 shows the structure of the 32-bit addition in de-
tail.

Figure 4: Multiplication over GF(232).

Multiplication Over GF(232). The multiplication
of constant αi ∈GF(232) and x∈GF(232) can be cal-
culated with table lookup and exclusive-or operations
as;

αi · x = (x� 8)⊕alpha i[(x� 24)],

where� and� is left-shift and right-shift operation
respectively. The table alpha i is a 32-bit to 32-bit
LUT; however, we divide it into eight 4-bit to 4-bit
LUTs. Figure 4 shows the structure of the multiplica-
tion over GF(232) in detail.

Sub Function. The Sub function can be imple-
mented using four 8-bit to 32-bit LUTs and three 32-
bit exclusive-or operations as;

Sub(x) =sub 0[x&0xFF]⊕sub 1[(x� 8)&0xFF]

⊕sub 2[(x� 16)&0xFF]

⊕sub 3[(x� 24)&0xFF],

where & is logical AND operation. Figure 5 shows
the detailed structure of the Sub function.

Figure 5: Sub Function.

32-bit Multiplexer. The dynamic feedback con-
troller functions f and g can be implemented using
32-bit multiplexers. The function f outputs one of
α1 ·B0 and α2 ·B0 according to A(t)

2 [30], and g out-
puts one of α3 ·B8 and B8 according to A(t)

2 [31] and
the multiplexer extracts the appropriate output. The
32-bit multiplexer can be implemented with eight 12-
bit to 4-bit LUTs. Figure 6 shows the structure of the
32-bit multiplexer in detail.

Figure 6: 32-bit Multiplexer.
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Figure 7: One Cycle of Key Initialization Process of KCipher-2.

4.2 Implementation of KCipher-2

The key initialization process of KCipher-2 based on
LUTs is shown in Fig. 7. The figure shows one cycle
of the key initialization process. The entire key ini-
tialization process consists of 24 repeats of the cycle.

5 EVALUATION

We evaluate the storage size required for the white-
box implementation of KCipher-2. We then analyze
the security of the implementation.

5.1 Storage Size

We estimate the total size of LUTs used in the white-
box implementation of KCipher-2. First, we show the
size of LUTs for basic operations. Then, we evaluate
the total storage size for the one cycle and the entire
key initialization process.

The size of the LUT is estimated by nb · 2na bits
or nb · 2na−3 bytes where na is the input bit length
and nb is the output bit length. Table 1 shows the
storage size of LUTs for the basic operations used in
the white-box implementation of KCipher-2. One cy-
cle of the key initialization process contains ten 32-
bit exclusive-or operations, four 32-bit additions, four
multiplications over GF(232), four Sub functions and
two 32-bit multiplexers. Thus, the storage size re-
quired for one cycle of the key initialization process
is 87 kilobytes. The total storage size for the entire
key initialization process is 87×24 kilobytes or 2,088
kilobytes.

Optimization with Pre-computation. We can re-
duce the storage size of our white-box implemen-
tation. The input of some LUTs is independent of

the IV; that is, it depends only on the embedded se-
cret key. These LUTs can be removed using a pre-
computation technique. This optimization facilitates
a 245-kilobyte reduction, and the total storage size is
1,843 kilobytes.

5.2 Security

We consider the security of our white-box implemen-
tation against a black-box attack and BGE attack.

Black-box Attack. A black-box attack can be pro-
tected against using the input/output encoding tech-
nique proposed by Chow et al. (Chow et al., 2003b).
An attacker tries to extract some parts of the key from
the input/output of LUTs. For example, Sub(K5 � 0)
is assigned to L1 and Sub(K8 � 0) is assigned to R1
at the first cycle of the key initialization process. The
attacker can extract K5 and K8 from the input/output
of the LUTs for 32-bit addition.

To protect a LUT T , we choose bijections P and
Q, and generate the new table T ′ = Q ◦ T ◦P−1. If
the output of T feeds into another table U , we have
to choose the bijections so that output encoding of T
and input encoding U cancel each other. Table T and
U can be protected as follows;

U ′ ◦T ′ = (R◦U ◦Q−1)◦ (Q◦T ◦P−1)

= R◦ (U ◦T )◦P−1,

where T ′ = Q◦T ◦P−1 and U ′ = R◦U ◦Q−1.
The carry of 4-bit addition can also be protected

by the input/output encoding technique. Some 4-bit
addition LUTs output flipped carry and the others out-
put unflipped carry. The total number of 4-bit addi-
tions is 384 in the white-box implementation and 377
in the optimized implementation. Thus, the computa-
tional complexity to guess the input/output encoding
of the entire key initialization process is 2384 and 2377,
respectively.
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Table 1: Storage Size of LUTs for Basic Operations.

Operation Structure Storage Size
32-bit Exclusive-OR 8-bit to 4-bit LUTs × 8 1 [KB]
32-bit Addition 9-bit to 5-bit LUTs × 8 2.5 [KB]
Multiplication over GF(232) 8-bit to 4-bit LUTs × 8 1.75[kB]

+ 4-bit Exclusive-OR × 6
Sub Function 8-bit to 32-bit LUTs × 4 7[KB]

+ 32-bit Exclusive-OR × 3
32-bit Multiplexer 12-bit to 4-bit LUTs × 8 16[KB]

BGE Attack. Billet et al. (Billet et al., 2005)
demonstrated that the white-box implementation of
AES is vulnerable to a kind of algebraic attack. The
attack is named after the initials of authors, the BGE
attack. However, the BGE attack strongly relies on
public constants and building blocks used in the AES
and cannot be applied to the white-box implementa-
tion of KCipher-2.

Code-lifting Attack. A code-lifting attack extracts
and copies the entire white-box implementation to
other PCs and devices. The copied program can ac-
cess the secret key as well as the original one since
the key is embedded in the program. We can pro-
tect against this attack by increasing the storage size
according to the concept of the space hardness (Bog-
danov and Isobe, 2015).

Our original method uses four-bitwise operations.
We can use eight-bitwise or 16-bitwise operations
to achieve a higher level of security against a code-
lifting attack. The total storage size is 3.09 gigabytes
with eight-bitwise operations and over 24 petabytes
with 16-bitwise operations. Thus, the implementa-
tion with eight-bitwise operations is feasible for space
hard implementation. There exists an oblivious trade-
off between portability and security against a code-
lifting attack.

6 CONCLUSION

We proposed a white-box implementation of a stream
cipher that can achieve the same asymptotic perfor-
mance as the standard implementation. Our black-
box implementation of KCipher-2 achieves low stor-
age consumption of no more than 2 megabytes and
is suitable for a PC, tablet, and smartphone. On the
other hand, we can achieve space hard implementa-
tion to protect against a code-lifting attack. Further-
more, the implementation can protect against black-
box attacks and a BGE attack. Our future research
includes a performance evaluation of the software im-

plementation and expansion of the proposed method
to other stream ciphers.
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White-Box Cryptography in the Gray Box A
Hardware Implementation and its Side Channels .
https://eprint.iacr.org/2016/203.

Saxena, A., Wyseur, B., and Preneel, B. (2009). Towards
Security Notions for White-Box Cryptography. In
Proc. of Information Security Conference (ISC 2009),
Lecture Notes in Computer Science 5735, pages 49–
58.

Xiao, Y. and Lai, X. (2009). A Secure Implementation of
White-Box AES. In Proc. of International Confer-
ence on Computer Science and its Applications (CSA
2009), pages 1–6.

White-box Implementation of Stream Cipher

269


