Proposal of New Tracer Concentration Model in Lung PCT Study - Comparison with Commonly Used Gamma-variate Model

Maciej Browarczyk, Renata Kalicka, Seweryn Lipiński

Abstract

Perfusion computed tomography (pCT) is one of the methods that enable non-invasive imaging of the hemodynamics of organs and tissues. On the basis of pCT measurements, perfusion parameters such as blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface (PS) are calculated and then used for quantitative evaluation of the tissue condition. To calculate perfusion parameters it is necessary to approximate concentration-time curves using regression function. In this paper we compared three regression functions: first commonly used gamma-variate function, second and third Gauss and Rayleigh functions, not previously used for this purpose. The Gauss function showed clear advantage over the others when considering results of simulated data analysis. Actual measurements analysis confirmed conclusions from simulated data analysis. It was showed that contrary to widely accepted belief, the differences between rising and falling edge slope angles of concentration-time curves are inconsiderable. For that reason, it can be assumed that rising and falling edges are symmetrical. The main conclusion is that the Gauss function gives a more robust fit than the widely used gamma-variate function when modelling concentration-time curves in lung pCT studies.

References

  1. Balthazar, E. (2011). CT Contrast Enhancement of the Pancreas: Patterns of Enhancement, Pitfalls and Clinical Implications. Pancreatology, 11(6), pp.585- 587.
  2. Balvay, D., Ponvianne, Y., Claudon, M. and Cuenod, C. (2008). Arterial input function: Relevance of eleven analytical models in DCE-MRI studies. In: Proceedings of 5th IEEE International Symposium on Biomedical Imaging. Paris: IEEE.
  3. Blomley, M. and Dawson, P. (1997). Bolus dynamics: theoretical and experimental aspects. The British Journal of Radiology, 70(832), pp.351-359.
  4. Browarczyk, M., Kalicka, R. and Lipinski, S. (2015). Lung Perfusion Parameters in the Diagnosis of Diabetic Pulmonary Microangiopathy. In: I. Lackovic and D. Vasic, ed., 6th European Conference of the International Federation for Medical and Biological Engineering, 1st ed. Dubrovnik: Springer International Publishing, pp.444-447.
  5. Calamante, F., Thomas, D., Pell, G., Wiersma, J. and Turner, R. (1999). Measuring Cerebral Blood Flow Using Magnetic Resonance Imaging Techniques. Journal of Cerebral Blood Flow & Metabolism, pp.701-735.
  6. Cao, Y. (2011). The Promise of Dynamic ContrastEnhanced Imaging in Radiation Therapy. Seminars in Radiation Oncology, 21(2), pp.147-156.
  7. Chen, M. and Siochi, R. (2011). Feasibility of using respiratory correlated mega voltage cone beam computed tomography to measure tumor motion. Journal of Applied Clinical Medical Physics, 12(2), p.3473.
  8. Cobelli, C., Foster, D. and Toffolo, G. (2002). Tracer kinetics in biomedical research. New York: Kluwer Academic.
  9. Cohen, M. (1966). The Organization of Clinical Dosimetry: I. the four stages of clinical dosimetry. Acta Radiologica: Therapy, Physics, Biology, 4(3), pp.233-256.
  10. Enderle, J., Blanchard, S. and Bronzino, J. (2000). Introduction to biomedical engineering. San Diego: Academic Press.
  11. Hopkins, S., Henderson, A., Levin, D., Yamada, K., Arai, T., Buxton, R. and Prisk, G. (2007). Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. Journal of Applied Physiology, 103(1), pp.240-248.
  12. Jackson, A. (2004). Analysis of dynamic contrast enhanced MRI. The British Journal of Radiology, 77(suppl_2), pp.S154-S166.
  13. Kalicka, R. and Pietrenko-Dabrowska, A. (2006). Parametric Modeling of DSC-MRI Data with Stochastic Filtration and Optimal Input Design Versus Non-Parametric Modeling. Annals of Biomedical Engineering, 35(3), pp.453-464.
  14. Kalicka, R., Browarczyk, M. and Lipinski, S. (2015). Usefulness of chest perfusion computed tomography in the diagnosis of diabetic pulmonary microangiopathy. Biocybernetics and Biomedical Engineering, 35(1), pp.68-73.
  15. Ku, H. (1966). Notes on the use of propagation of error formulas. Journal of Research of the National Bureau of Standards, Section C: Engineering and Instrumentation, 70C(4), p.263.
  16. Lampaskis, M., Strouthos, C. and Averkiou, M. (2009). Application of tracer dilution models for the quantification of perfusion with contrast enhanced ultrasound imaging. In: Proceedings of 14th European Symposium on Ultrasound Contrast Imaging. Rotterdam.
  17. Lilienfield, L., Kovach, R., Marks, P., Hershenson, L., Rodnan, G., Ebaugh, F. and Freis, E. (1956). THE HEMATOCRIT OF THE LESSER CIRCULATION IN MAN 12. Journal of Clinical Investigation, 35(12), pp.1385-1392.
  18. Mírka, H., Ferda, J., Baxa, J., Treška, V., Liška, V., Schmidt, B. and Flohr, T. (2010). Perfusion CT of the liver. Czech Radiology, 64(4), pp.281-289.
  19. Nakano, S., Gibo, J., Fukushima, Y., Kaira, K., Sunaga, N., Taketomi-Takahashi, A., Tsushima, Y. and Mori, M. (2013). Perfusion Evaluation of Lung Cancer. Journal of Thoracic Imaging, 28(4), pp.253-262.
  20. Ng, Q. and Goh, V. (2010). Angiogenesis in Non-small Cell Lung Cancer. Journal of Thoracic Imaging, 25(2), pp.142-150.
  21. Pevsner, A., Nehmeh, S., Humm, J., Mageras, G. and Erdi, Y. (2005). Effect of motion on tracer activity determination in CT attenuation corrected PET images: A lung phantom study. Med. Phys., 32(7), p.2358.
  22. Praveenkumar, R., Augustine, A. and Santhosh, K. (2011). Estimation of inhomogenity correction factors for a Co-60 beam using Monte Carlo simulation. Journal of Cancer Research and Therapeutics, 7(3), p.308.
  23. Sauter, A., Feldmann, S., Spira, D., Schulze, M., Klotz, E., Vogel, W., Claussen, C. and Horger, M. (2012). Assessment of Splenic Perfusion in Patients with Malignant Hematologic Diseases and Spleen Involvement, Liver Cirrhosis and Controls Using Volume Perfusion CT (VPCT). Academic Radiology, 19(5), pp.579-587.
  24. Semmlow, J. (2005). Circuits, signals, and systems for bioengineers. Oxford: Academic.
  25. Srikanchana, R., Thomasson, D., Choyke, P. and Dwyer, A. (2004). A comparison of pharmacokinetic models of dynamic contrast enhanced MRI. In: Proc. IEEE Symp. Computer-Based Med. Syst.. Bethesda: IEEE, pp.361-366.
  26. Thompson, H., Starmer, C., Whalen, R. and Mcintosh, H. (1964). Indicator Transit Time Considered as a Gamma Variate. Circulation Research, 14(6), pp.502-515.
  27. Wintermark, M., Sincic, R., Sridhar, D. and Chien, J. (2008). Cerebral perfusion CT: Technique and clinical applications. Journal of Neuroradiology, 35(5), pp.253-260.
  28. Zhao, H., Gong, J., Wang, Y., Zhang, Z. and Qin, P. (2010). Renal hemodynamic changes with aging: a preliminary study using CT perfusion in the healthy elderly. Clinical Imaging, 34(4), pp.247-250.
Download


Paper Citation


in Harvard Style

Browarczyk M., Kalicka R. and Lipiński S. (2017). Proposal of New Tracer Concentration Model in Lung PCT Study - Comparison with Commonly Used Gamma-variate Model . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017) ISBN 978-989-758-212-7, pages 134-140. DOI: 10.5220/0006115101340140


in Bibtex Style

@conference{biosignals17,
author={Maciej Browarczyk and Renata Kalicka and Seweryn Lipiński},
title={Proposal of New Tracer Concentration Model in Lung PCT Study - Comparison with Commonly Used Gamma-variate Model},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017)},
year={2017},
pages={134-140},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006115101340140},
isbn={978-989-758-212-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017)
TI - Proposal of New Tracer Concentration Model in Lung PCT Study - Comparison with Commonly Used Gamma-variate Model
SN - 978-989-758-212-7
AU - Browarczyk M.
AU - Kalicka R.
AU - Lipiński S.
PY - 2017
SP - 134
EP - 140
DO - 10.5220/0006115101340140