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Abstract: A mathematical method was developed in this study to determine tandem repeats in a DNA sequence. A 
multiple alignment of periods was calculated by direct optimization of the position-weight matrix (PWM) 
without using pairwise alignments or searching for similarity between periods. Random PWMs were used to 
develop a new mathematical algorithm for periodicity search. The developed algorithm was applied to 
analyze the DNA sequences of A.thaliana genome. 13997 regions having a periodicity with length of 2 to 50 
bases were found. The average distance between regions with periodicity is ~9000 nucleotides. A 
significant portion of the revealed regions have periods consisting of 2 nucleotide, 10-11 nucleotides and 
periods in the vicinity of 30 nucleotides. No more than ~30% of the periods found were discovered early. 
The sequences found were collected in a data bank from the website: http://victoria.biengi.ac.ru/cgi-
in/indelper/index.cgi. This study discussed the origin of periodicity with insertions and deletions. 

1 INTRODUCTION 

Periodicity is one of the structural regularities of 
sequences and is widely represented in DNA 
sequences (Korotkov et al. 2003). A periodicity is 
considered as latent, if the similarity between any 
two periods is not statistically significant or if it 
belongs to the twilight zone (Durbin et al. 1998). 
Perfect periodicity can become latent periodicity, if 
it accumulates over 1.0 mutation per nucleotide in 
the studied DNA sequence (Suvorova et al. 2014). 
The distinctive property of latent periodicity is that it 
cannot be detected by pairwise comparisons of 
nucleotide sequences. However, latent periodicity 
can be found if a mathematical method is applied to 
directly detect the multiple alignment of nucleotide 
sequences without constructing pairwise alignments. 
The periods of a sequence with latent periodicity are 
sequences for multiple alignment and this multiple 
alignment may be the statistically significant without 
the statistical importance of any pair alignment. The 
aim of this study was to develop a mathematical 
method which allows finding the periodicity of DNA 
sequences as well as latent periodicity. 

At present, there is a significant gap in the 
mathematical approaches developed in search for 

periodicities in symbolic and numeric sequences 
(sequence-based methods). Spectral approaches 
enable the finding of adequate "fuzzy" periodicity in 
nucleotide sequences without the insertion(s) or 
deletion(s) of nucleotides. Fourier transform, 
Wavelet transform, information decomposition and 
some other methods can be attributed to the number 
of spectral methods (Lobzin & Chechetkin 2000; 
Kravatskaya et al. 2011; Korotkov et al. 2003; Meng 
et al. 2013; Afreixo et al. 2004; Kumar et al. 2006). 
However, these approaches have a significant 
limitation – they do not allow the detection of a 
periodicity with insertions and deletions.  

On the other hand, methods based on pairwise 
alignment can accurately find insertions and 
deletions (Benson 1999; Parisi et al. 2003). 
However, these methods cannot detect a latent 
periodicity, in a situation where the statistical 
significance of similarity between any two periodic 
sequences is small (Korotkov et al. 2003; Turutina et 
al. 2006). This is due to the fact that the periodicity 
of DNA sequences (with the number of periods 
greater than or equal to 4) is detected by pairwise 
similarity between periods. In the absence of 
statistically significant pairwise similarity, these 
approaches are incapable of finding latent 
periodicity. First, it involves algorithms and 
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programs, such as TRF (Benson 1999), Mreps 
(Kolpakov et al. 2003), TRStalker (Pellegrini et al. 
2010), ATRHunter (Wexler et al. 2005), T-REKS 
(Jorda & Kajava 2009), IMEX (Mudunuri et al. 
2010; Mudunuri & Nagarajaram 2007), CRISPRs 
(Grissa et al. 2007), SWAN (Boeva et al. 2006) and 
some others (Lim et al. 2013; Moniruzzaman et al. 
2016), because the similarity between different 
periods is very low in the case of latent periodicity. 
It is true for algorithmic methods too (Domaniç & 
Preparata 2007; Sokol & Tojeira 2014). This leads to 
lack of seeds and identical short strings. Therefore, 
this study proposes a mathematical method that 
considers this gap and finds the latent periodicity of 
any symbolic sequence in the presence of insertions 
and deletions (in unknown positions of the analyzed 
sequence) and in the absence of a known position-
weight matrix (PWM). 

Any periodicity of the sequence S with length N 
can be characterized by either the frequency matrix 
(E. V. Korotkov et al. 2003) or created on its base, 
the PWM M (Shelenkov et al. 2006). Each row of 
the matrix is associated to a nucleotide and the signs 
of the columns are the positions of the period. The 
element of this matrix m(i,j) indicates the weight 
m(i,j) which has the nucleotide i in position j of the 
period. The positions of the period vary from 1 to n. 
The sequence S1 of length N, which is an artificial 
periodic sequence 1,2,...,n,1,2,...,n,... is introduced. 
Here, the numbers are treated as symbols and 
columns in the matrix M are consistent with them. 
For period equal to n, the sequence S corresponds to 
a certain frequency matrix and PWM M(4,n). The 
problem is formulated as follows: This study has a 
sequence S with length N. It is necessary to find such 
optimal PWM M0, where the local alignment 
(Durbin et al. 1998) of sequences S1 and S have the 
greatest statistical significance. Under the statistical 
significance, the probability P is that Fr>mFmax, 
where mFmax is the maximum weight of a local 
alignment of sequences S and S1, using the optimal 
matrix M0. Here, Fr represents the maximum weight 
of a local alignment randomly mixed sequence S and 
sequence S1, using the optimal matrix Mr. The search 
is for matrix M0, which has the lowest probability P. 
It is always possible to set the threshold level of the 
probability P0  and if the probability P(Fr>mFmax) 
will be less than P0, then the local alignment found 
of sequences S and S1, using the optimum matrix M0 
can be considered as statistically significant. It is 
possible to use a local alignment algorithm for 
alignment of the nucleotide sequence S and an 
artificial periodic sequence S1, relative to the known 
PWM (Smith & Waterman 1981). It is necessary to 

find the optimal PWM M0 by any means. Therefore, 
the aim of this study was to develop a mathematical 
approach for finding the matrix M0, as well as a 
method for assessing the probability P. To determine 
the optimal PWM, an optimization procedure was 
used, as well as a local alignment algorithm in order 
to account for insertions or deletions. To estimate 
the probability P, the Monte Carlo method was used. 
Instead of P0 we used F0 for which P(Fr>F0)≤P0. 

A mathematical method was developed in this 
study to find more than 4 tandem repeats in the 
DNA sequence. The multiple alignment of periods 
was calculated by direct optimization of the PWM 
without using pairwise alignments or a search for 
similarity between periods. This means that for each 
n, a matrix M0 was found, the probability P was 
estimated and the alignment of the sequences S and 
S1 was built using the M0 matrix. It is not the goal of 
this study to analyze all the known DNA sequences, 
since the developed method requires large computer 
resources. The developed algorithm was applied to 
search for periodicity with insertions and deletions 
in the A.thaliana genome. This study showed the 
presence of periodicity with insertions and deletions 
in the A.thaliana genome regions for which the 
presence of periodicity was not previously known. 

2 METHODS AND ALGORITHMS 

In this study, a window which equals 630 base pairs 
was used to search for periods in the chromosomes 
of A.thaliana genome. This window moved with 
step equal to 10 base pairs from the beginning to the 
end of  each chromosome of A.thaliana. The DNA 
sequences in the window were denoted as S. To 
search for periodicity with insertions and deletions 
in sequence S, the algorithm shown in Fig. 1 was 
used. As seen from the algorithm, firstly, a set of 
random matrices Qn (Fig. 1, step 2) of size 4xn was 
generated, where n is the length of the period, and 4 
is the alphabet size of the studied sequence. Then, 
the matrices were optimized since the distribution of 
the similarity function Fmax for each of the matrices 
in the set of all random sequences (set Sr, paragraph 
2.5) ought to be similar. Then, a local alignment of 
the studied sequence S was built relative to each 
optimized random matrix (Fig. 1, step 4). Local 
alignment was used to determine the similarity 
function Fmax for each optimized matrix. The 
optimized matrix having the highest value of the 
similarity function Fmax, with the studied sequence S, 
was chosen. Thereafter, this matrix was optimized to 
achieve the highest value of the similarity function 
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Fmax (mFmax) with the studied sequence S (Fig. 1, 
step 5) and the optimized matrix was called M0. 

 Figure 1: The main stages of the algorithm used for 
calculation mFmax(n) for analyzed sequence S. 

If mFmax(n)  is more than the cutoff level F0  then the 
sequence S contains the region with periodicity 
equal to n. In this study, periodicity in the interval 
from 2 to 50 base pairs was evaluated. If several 
periods have mFmax(n)>F0,  n which has the 
maximum value of mFmax(n) was selected (Fig. 1, 
step 6). Selection of the level of F0 is considered in 
paragraph 2.6. Subsequently, the window was 
moved for 10 base pairs along the A.thaliana 
chromosome and the calculations were repeated  
(Fig. 1, step 7). As a result of the algorithm, the 
dependence of mFmax on n was obtained for 
sequence S with help of a local alignment. This 
means that the boundaries of the regions with 
mFmax(n) may differ from the beginning and end of 
the sequence S. It also means that the values of 
mFmax(n) for different n can be obtained for different 
fragments of the studied sequence S. The boundaries 
of the fragments, obtained for relevant values of 
mFmax(n) are shown. Subsequently, each step of the 
algorithm shown in Fig. 1 was examined in more 
detail. 

2.1 Creation of a Set Qn of Random 
Matrices with Length N 

Random matrices Qn with dimension 4xn were used, 
where n is the length of the period (Fig. 1, step 2). 
Each matrix can be viewed as a point in space 4xn 
and elements of a matrix are real random numbers. 

A set of random matrices Qn was created when the 
distance between them in the space 4xn was not less 
than a certain value. To calculate the differences 
between the two matrices m1(i,j) and m2(i,j), the 
information measure was used (Kullback 1997): 
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Hence, 1 22 ( , )I M M  has an approximate 2 ( )df , 
and df equal to 3n since 1 1 2( , )I M M , 2 1 2( , )I M M ,…,

1 1 2( , )nI M M  are independent and 1 2( , )nI M M  is 

completely determined by  1 1 2( , )I M M , 2 1 2( , )I M M

,…, 1 1 2( , )nI M M  (Kullback 1997). Then the chi-

square distribution was approximated by means of 
the normal distribution: 

1 2 1 2( , ) 4 ( , ) 2 1x M M I M M df    (3) 

The value 1 2( , ) ~ (0,1)x M M N , где N(0,1) is the 

standard normal distribution. N(0,1) is very useful as 
a measure of the differences between matrices m1(i,j) 
and m2(i,j). The probability p=P(x>x(M1,M2)) shows 
that differences between the matrices m1(i,j) and 
m2(i,j) are determined by random factors. If the 
difference between the matrices m1(i,j) and m2(i,j) 
increases, then 1 2( , )x M M  becomes larger. The 

difference between matrices L= 1 2( , )x M M  not less 

than 1.0 was chosen.  
Here, an algorithm was used to generate the 

matrices. Each element of the matrix m(i,j), i=1,…,4, 
j=1,…,n was randomly filled with equal probability 
of either 0 or 1. The matrix was then compared with 
all matrices that were already included in the set Qn. 
If at least one matrix has a difference less than 
L=1.0, than the generated matrix was not included in 
the set Qn. If the difference was greater than L=1.0 
for all matrices from the set Qn, then the matrix is 
included in the set Qn. The 106 of such matrices were 
created for each period length n.  
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2.2 Optimizing of Random Matrixes 

For every matrix M from the set Qn, the values R and 
Kd were calculated as: 
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where f(i)=b(i)/N, b(i) is the number of nucleotides 
of type i in the sequence S, t(j) is the probability 
symbol "j" in the sequence S1. In this case, t(j)=1/n. 
N is the total number of nucleotides in the sequence 
S, N=630. To calculate the alignment, a optimized 
matrix 'M  is needed. Calculations of 'M  was 
described early in (Pugacheva, V., Korotkov, A. and 
Korotkov 2016; Pugacheva V.M. et al. 2016). 

2.3 Alignment of Nucleotide Sequence 
with Optimized Random Matrices  

A local alignment of sequences S1 and S (Durbin et 
al. 1998) was conducted using the PWM (Sinha 
2006) and affine function penalty for insertions and 
deletions to search for Fmax and the matrix M0 

(Durbin et al. 1998). To construct the alignment, the 
matrices for similarity functions F, F1 and F2 were 
filled for each matrix M from the set Qn. The matrix 
M changed and turned into a optimized matrix M'. 
The principles of this optimization are shown in 
paragraph 2.2 and local alignment was described in 
(Pugacheva, V., Korotkov, A. and Korotkov 2016; 
Pugacheva V.M. et al. 2016). 

2.4 Optimization of a Random Matrix 
with the Largest Value of 
Similarity Function 

For all matrices from the set Qn, the modified matrix 
max(m'), which had the highest value of the 
similarity function Fmax was determined. Let call this 
value as mFmax. Thus, the alignment was calculated 
and the coordinates of the alignment were 
determined (Fig. 1, step 5). However, despite the use 
of a very large number of matrices, the matrix 
max(m') may have the value mFmax, which is not the 
largest for a sequence S and for length of period n. 
This indicates that the largest value can be achieved 
for matrix M0, which lies at some distance from the 
matrix max(m'), that is less than the chosen threshold 
L=1.0 (paragraph 2.1). Therefore, approximately 106 
matrices were created, having distance L from the 

matrix max(m') from 1.0-0.1*i to 0.9-0.1*i (for i=0). 
These matrices were also used as indicated in 
paragraph 2 and a new matrix max(m') was chosen 
which had the highest value mFmax. This procedure 
was repeated for i from 1 to 9 and max(m') for i=9 
was chosen as M0 matrix. 

2.5 Generation of Random Sequences 
and Selection of F0 

A set Sr of random sequences was created by 
random shuffling of the sequence S and the set Sr 
containing 200 sequences. To generate one random 
symbolic sequence, a random number sequence of 
length N=630 was generated by the random number 
generator. Then, a random number sequence was 
arranged in ascending order, storing the generated 
permutations. The produced permutations were used 
to mix the sequence S, and as a result of this mixing, 
the random symbolic sequence from the set Sr was 
created.  

 

Figure 2: Length distribution of the periods found in 
genome A.thaliana. Np is a number of periods, n is a 

period length. 

In this study, threshold F0 was determined as 
follows: Firstly, the sequences of A.thaliana 
chromosomes were obtained and mixed randomly as 
carried out during the creation of set Sr. Thereafter, 
using the algorithm illustrated in Fig. 1, we 
determined the number of sequences Hr(F), which 
have mFmax(n)>F  for every n in the range of 2 to 50 
bases. F runs from 200.0 to 500.0. The length of the 
window, as in the case of the analysis of A.thaliana 
chromosomes, was equal to 630 nucleotides. 
Simultaneously, the number of sequences H(F), 
which have mFmax(n)>F for sequences of the 
A.thaliana chromosomes was determined. After that, 
F0,  which has the ratio Hr(F0)/H(F0)≤0.05, was 
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chosen. This choice of F0 gives the number of false 
positives (errors of the first kind) less than 5%. In 
this study, F0=390.0 and it provides 
Hr(F0)/H(F0)≤0.05, for analysis of the A.thaliana 
genome. 

This study did not analyze the period which had 
3 nucleotides. This means that each window was 
checked for the presence of a period which equals 3 
nucleotides. To do this, the mutual information 
between the sequence S and artificial periodic 
sequence S2={123}200 was calculated. Thereafter, the 
matrix of the triplet periodicity was calculated and 
with the help of this matrix, the correlation between 
S and S2 sequences was determined as shown 
previously (Frenkel & Korotkov 2008). For the 
measurement of correlation, the argument of normal 
distribution X was selected. The higher value of X 
corresponds to higher correlation between sequences 
S и S2. It was identified that if X<3.0, it indicates the 
absence of a period equal to 3 bases in the sequence 
S and the search for periods was carried out using 
this study's algorithm (Fig. 1). However, X≥3.0 
indicated that the sequence S was not analyzed and 
the window was shifted by 10 nucleotides. 

3 RESULTS AND DISCUSSION 

In general, 5 chromosomes with a total length some 
more 116 million bases were analyzed in this study. 
Sequences were obtained from the website 
ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_genb
ank/A_thaliana/OLD/. The calculations were 
performed at the supercomputer cluster of the 
Russian Academy of Sciences (http:// 
www.jscc.ru/eng/index.shtml). In A.thaliana 
genome, 13997 regions having a periodicity with 
length of 2 to 50 bases were found. On the average, 
a periodicity of ~9000 nucleotides was found to be 
associated with each region. The sequences found 
were collected in a data bank from the website: 
http://victoria.biengi.ac.ru/cgi-in/indelper/index.cgi. 
It is interesting to consider the distribution of the 
lengths of periods found in A.thaliana. This 
distribution is shown in Fig. 2. From this figure, it is 
obvious that the distribution is very nonuniform and 
a significant portion of the revealed regions have 
lengths of periods equal to 2, 11, 30 and 31 
nucleotides. The small peak represents a period 
equal to 35 bases. Fig. 2 also shows the absence of a 
significant number of regions with period equal to 3 
bases. This is due to the fact that DNA with period 
equal to 3 bases was not analyzed because it related 
with coding regions. In this study, some number of 

regions with triplet periodicity were determined in a 
situation in which the original X was less than 3.0, 
and the period equal or multiple to 3 bases arose 
after the creation of alignment with insertions or 
deletions. 

Also, the repeatability of regions with periods in 
A.thaliana genome was studied using the Blast 
program. To do this, there was a search for similarity 
in the regions found with the A.thaliana genome 
sequences having e-value equal to 10-6. It was found 
that the 5287 regions represent a single copy, 2957 
regions had a copy number which ranged from 2 to 
5, and 8244 regions had more than 5 copies. We 
observed maximum number of copies equal to 1585. 
This shows that a significant part of the detected 
sequences belongs to the dispersed repeats(Mehrotra 
& Goyal 2014). 

 

Figure 3: mFmax(n) spectrum for fragment of the sequence 
NC_003074.1 from chromosome 3 of the A.thaliana 
genome. The coordinates of fragment are: 13905712-
13906329. 

In this study, one region with period were 
considered as examples. The region has a period 
length equal to 4 nucleotides, and this period can be 
detected only in the presence of deletions or 
insertions. The spectrum of mFmax(n) is shown in 
Fig. 3. This region was found in the third 
chromosome of the A.thaliana genome, in sequence 
NC_003074.1. mFmax(4)=660.52. This period was 
not detected by TRF (Benson 1999), T-REKs (Jorda 
& Kajava 2009) programs. These programs revealed 
an insignificant periodicity equal to 13, 30 and 40 
bases. TRF found 2.9 periods while T-REKs found 3 
periods equal to 30 nucleotides. Mreps (Kolpakov et 
al. 2003) found three periods equal to 5 bases In this 
sequence, the program ATR hunter (Wexler et al. 
2005) found 3 periods with length of 30 bases and 2 
periods with length of 26 bases and completely did 
not see a period equal to 4 bases. Program TRStalker 
(Pellegrini et al. 2010) found 3 repeats with length 
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of 13 bases and 2.5 repeats with length 60 bases but 
did not find 4 base repeats. The program Repfind 
(Betley et al. 2002) found 10 dispersed perfect 
repeats TCGG, 9 GATC and 11 GGAT. But these 
repeats had a lower level of statistical significance. 
The BWT program (Pokrzywa & Polanski 2010) 
found no repeats in the sequence. According to this 
study's estimates, mFmax(4)=660.3, it corresponds to 
P(mFmax>660.3)<10-30, because the average value of 
mFmax for random sequences Sr is about 136.8 and σ 
~ 54.2. The resulting alignment and the resulting 
matrix M0 can be received from 
http://victoria.biengi.ac.ru/cgi-in/indelper/index.cgi. 
A consensus period with length equal to 4 
nucleotides is (T/C)CGA. This period was repeated 
more than 140 times in the region found and the 
period equal to 4 bases had the highest statistical 
significance. 

 

Figure 4: Influence of base changes on mFmax(20) for 
sequences 400 and 600 base pairs. X is the number of base 
changes per 1 nucleotide. The period length equals to 10 
b.p. 

In this study, the influence of random base 
substitutions on the mFmax level was evaluated. To 
do this, sequences with lengths 600 and 400 
nucleotides long and period equal to 20 nucleotides 
were used. Random positions were selected in these 
sequences and random replacements of the 
nucleotides were made on any of a, t, c, and g with 
equal probability. Thereafter, mFmax(20) was 
calculated. The resulting function is shown in Fig. 4. 
It can be seen that F0=390 is equal to approximately 
1.6 and 1.0 random substitutions per nucleotide, for 
sequences with lengths equal to 600 and 400 
nucleotides, respectively. This result shows the 
upper boundary of the accumulation of random 
substitutions in the discovered regions and this 
bound is 1.6 substitutions per nucleotide. 

The results of this study were compared with 
that of the  T-REKs program. To this end, intervals 

were introduced: 500-600, 900-1000, 1400-1500, 
1900-2000, 2400-2500, 2900-3000. For these 
intervals, all the sequences with periods found in this 
study were chosen. For each sequence, the period 
length n was found.  Thereafter, the periods in these 
sequences were searched by the program T-REKs. 
T-REKs is one of the best tools for finding tandem 
repeats in DNA sequences. It is believed that the T-
REKs program reveals the same period, if it detects 
a period length which has a difference of no more 
than ±1 base from our period. This interval was 
chosen, due to the fact that we have developed a 
method which may make insertions, deletions and 
closed periods to have statistically important mFmax. 
It was also felt that the program T-REKs, finds the 
same period, if the number of detectable periods is 
not less than L/2n, where L is the length of the 
sequence with period equal to n. As a result, the 
proportion of regions detected by the program T-
REKs for different intervals was calculated. This 
function is shown in Fig. 5. From this graph, it is 
clear that before mFmax=1500, the program T-REKs 
can find less than 30% regions and only for 
mFmax>2200 did the program reveal more than 50% 
of the regions.  

There is a natural question about the biological 
significance of the periods found. It applies 
primarily to periods of 10 and 11 nucleotides long, 
as well as to the nucleotides of multiple periods. 
There are earlier suggestions that the periodicity 
length of 10 and 11 nucleotides has a relationship 
with the α-helices in proteins, as well as with the 
processes of DNA compaction (Herzel et al. 1999; 
Larsabal & Danchin 2005). In this study, sequences 
without period equal to 3 bases were analyzed which 
is specific for the protein-coding regions. This 
means that most parts of the detected regions could 
be linked with DNA compaction (Schieg & Herzel 
2004; Kumar et al. 2006). Also, this study identified 
regions with periods (with insertions and deletions) 
which are impossible to detect by the methods of 
searching for correlations in DNA (Herzel et al. 
1999; Larsabal & Danchin 2005). It is very likely 
that work regions with periods ranging from 9 to 11 
bases and associated with the formation of 
chromatin loops, are found in this study. If we take 
into account that the number of these regions is 
about 1,4x103 (Fig. 2) and we have analyzed about 
1,16x108 bases, the average distance between these 
regions (having periods in interval from 9 to11 
nucleotides) is about 9x104. This is consistent with 
the size of 30 nm chromatin loops (Kadauke & 
Blobel 2009). These regions could be "hot spots" for 
chromosomal rearrangements also (Kantidze & 
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Razin 2009). At the same time, regions were found 
with periods which could be micro- and minisatellite 
sequences (Richard et al. 2008). In this case, classic 
micro and mini minisatellites were identified with 
insertions and deletions of nucleotides which have 
mFmax>2000. According to Fig. 4, in this case the 
number of substitutions is not more than 50% per 
nucleotide. When mFmax<2000, ancient copies of 
micro- and minisatellite sequences were discovered 
that have accumulated a considerable number of 
nucleotide substitutions, insertions and deletions of 
nucleotides.   

 

Figure 5: Comparison of developed algorithm with the 
program T-REKs (Jorda & Kajava 2009). ID shows the 
part of periodicities regions which can find the T-REKs. 
We can assume that the results are the same if the T-REKs 
detects at least 50% of the number of periods and the 
period length differs not by more than one base. 

It is also interesting to estimate the part of the 
A.thaliana genome which has period regions. The 
average length of the region which was found with 
the periods is 400 bases and the number of regions 
found is 13997. This corresponds to a total length 
equal to about 6,6x106 nucleotides, which is ~5% of 
the total length of the A.thaliana genome. 

There are the limits of applicability of the 
method developed in this study. As was noted earlier 

(paragraph 2.2.1), an average value, l =150, was 
chosen using the random sequences. This means that 
micro and mini satellite sequences less than this 
length are detected as not very good by this method. 
The fact is that these lengths can not overcome the 
threshold F0 = 390.0;thus, these sequences can be 
missed by this study's method. This means that even 
perfect micro- and minisatellites may be skipped, if 
they have a length equal to or less than 150 
nucleotides. On the basis of this limitation, a 
comparison can be made between the earlier work 
on the search for micro and minisatellite and the 
results of this study. Previously, micro- and 

minisatellite sequences from A.thaliana genome 
were investigated (Richard et al., 2008; Tóth et al., 
2000) and mathematical methods for finding the 
micro and mini satellites sequences shown in 
Moniruzzaman et al. (2016.). 

Above, the approach of this study was compared 
with the main methods used, when searching for 
micro and minisatellite sequences (Moniruzzaman et 
al. 2016). The programs used included TRF (Benson 
1999), T-REKs (Jorda & Kajava 2009), Mreps 
(Kolpakov et al. 2003), BWTRs (Pokrzywa and 
Polanski, 2010), ATR hunter (Wexler et al. 2005), 
Repfind (Betley et al. 2002). Therefore, it can be 
assumed that the developed approach misses perfect 
micro and minisatellite sequences which have a 
length of less than 100 bases. However, the method 
used in this study was able to find a highly diverged 
periodic region which have a considerable length 
(200 or more bases) and which passed by previously 
developed approaches. This study's method is 
suitable when it comes to searching for highly 
divergent tandem repeats, having a total length of 
more than 200 nucleotides. 

This work was supported by the Russian Science 
Foundation. 
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