Characterisation of Resting Brain Network Topologies across the Human Lifespan with Magnetoencephalogram Recordings: A Phase Slope Index and Granger Causality Comparison Study

Elizabeth Shumbayawonda, Alberto Fernández, Javier Escudero, Michael Pycraft Hughes, Daniel Abásolo

Abstract

This study focuses on the resting state network analysis of the brain, as well as how these networks change both in topology and location throughout life. The magnetoencephalogram (MEG) background activity from 220 healthy volunteers (age 7-84 years), was analysed combining complex network analysis principles of graph theory with both linear and non-linear methods to evaluate the changes in the brain. Granger Causality (GC) (linear method) and Phase Slope Index (PSI) (non-linear method) were used to observe the connectivity in the brain during rest, and as a function of age by analysing the degree, clustering coefficient, efficiency, betweenness, modularity and maximised modularity of the observed complex brain networks. Our results showed that GC showed little linear causal activity in the brain at rest, with small world topology, while PSI showed little information flow in the brain, with random network topology. However, both analyses produced complementary results pertaining to the resting state of the brain.

References

  1. Ahonen, A., Hämäläinen, M., Kajola, M., Laine, P., Lounasmaa, O., Parkkonen, L., Simola, J. and Tesche, C. (1993) 78122-channel squid instrument for investigating the magnetic signals from the human brain', Physica Scripta, vol. T49A, pp. 198-205.
  2. Akaike, H. (1974) 'A new look at the statistical model identification', IEEE Transactions on Automatic Control, vol. 19, no. 6, pp. 716-723.
  3. Bressler, S.L. and Richter, C.G. (2014) 78 Interareal oscillatory synchronization in top-down neocortical processing', Current Opinion in Neurobiology, vol. 31C, pp. 62-66.
  4. Bullmore, E. and Sporns, O. (2009) 'Complex brain networks: Graph theoretical analysis of structural and functional systems', Nature Reviews Neuroscience, vol. 10, no. 3, pp. 186-198.
  5. Cao, M., Wang, J., Dai, Z., Cao, X., Jiang, L., Fan, F., Song, X., Xia, M., Shu, N., Dong, Q., MPMilham, Milham, M., Castellanos, F., Zuo, X. and He, Y. (2013) 'Topological organization of the human brain functional connectome across the lifespan', Developmental cognitive neuroscience, vol. 7, pp. 76-93.
  6. Carlson, N.R., Heth, C.D., Miller, H., Donahoe, W, Buskist, J.W and Martin, N.G. (2007) 'BIOLOGY OF BEHAVIOR', in PSYCHOLOGY: THE SCIENCE OF BEHAVIOR, Boston: Pearson.
  7. Chowdhury, D. and Stauffer, D. (2000) Principles of equilibrium statistical mechanics, Weinheim: WileyVCH.
  8. Deco, G., Ponce-Alvarez, A., Mantini, D., Romani, G.L., Hagmann, P. and Corbetta, M. (2013) 'Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations', The Journal of Neuroscience, vol. 33, no. 27, pp. 11239- 11252.
  9. Dehemer, M. (2010) Structural Analysis of Complex Networks, Illustrated edition, Vienna: Springer Science & Business Media.
  10. Escudero, J., Hornero, R., Abasolo, D. and Fernandez, A. (2009) 'Blind source separation to enhance spectral and non-linear features of magnetoencephalogram recordings. Application to Alzheimer's disease', Medical Engineering and Physics, vol. 31, pp. 872-879.
  11. Fornito, A., Zalesky, A. and Breakspear, M. (2015) 'The connectomics of brain disorders', Neuroscience, vol. 16, no. 3, pp. 159-172.
  12. Friston, K., Moran, R. and Seth, A.K. (2013) 'Analysing connectivity with Granger causality and dynamic causal modelling.78, Current Opinion in Neurobiology, vol. 23, pp. 172-178.
  13. Gao, L., Sommerlade, L., Coffman, B., Zhang, T., Stephen, J.M., Li, D., Wang, J., Grebogi, C. and Schelter, B. (2015) 'Granger causal time-dependent source connectivity in the somatosensory network', Scientific Reports 5, vol. 5, no. 10399, pp. 1-10.
  14. Giedd, J.N. and Rapoport, J.L. (2010) 'Structural MRI of pediatric brain development: what have we learned and where are we going?78, Neuron, vol. 67, pp. 728-734.
  15. Goldenberg, D. and Galvan, A. (2015) 'The use of functional and effective connectivity techniques to understand the developing brain', Developmental cognitive neuroscience, vol. 12, pp. 156-164.
  16. Gomez, C., Hornero, R., Mediavilla, A., Fernandez, A. and Abasolo, D. (2008) 'Nonlinear forecasting measurement of magnetoencephalogram recordings from alzheimers disease patients', British Columbia, 2153-2156.
  17. Good, C.D., Johnsrude, I.S., Ashburner, J., Henson, R.N., Friston, K.J. and Frankowiak, R.S. (2001) 'A voxelbased morphometric study of ageing in 465 normal adult human brains', Neuroimage, vol. 16, pp. 21-36.
  18. Gow, D.W.J., Segawa, J.A., Ahlfors, S.A. and Lin, F. (2008) 'Lexical influences on speech perception: A Granger causality analysis of MEG and EEG source estimates', NeuroImage, vol. 43, pp. 614-623.
  19. Haufe, S., Nikulin, V.V., Muller, K.R. and Nolte, G. (2012) 'A critical assessment of connectivity measures for EEG data: a simulation study.78, Neuroimage, vol. 64, pp. 120- 133.
  20. Hsu, H.P., Mehra, V. and Grassberger, P. (2003) 'Structure optimization in an off-lattice protein model', Physical Reviews E, vol. 68, no. 037703, pp. 1-4.
  21. Huttenlocher, P.R., De Courten, C., Garey, L.J. and Van der Loos, H. (1982) 'Synaptic development in human cerebral cortex', International Journal of Neurology, vol. 16-17, pp. 144-154.
  22. Jafarpour, A., Barnes, G., Fuentemilla, L., Duzel, E. and Penny, W.D. (2013) 'Population Level Inference for Multivariate MEG Analysis', Public Library of Science, vol. 8, no. 8, pp. 1-8.
  23. Lebel, C., Walker, L., Leemans, A., Phillips, L. and Beauli, C. (2007) 'Microstructural maturation of the human brain from childhood to adulthood', NeuroImage, vol. 40, pp. 1044-1055.
  24. Niedermeyer, E. and Lopes da Silva, F.H. (2005) Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th edition, London: Lippincott Williams & Wilkins.
  25. Niso, G., Bruña, R., Pereda, E., Gutiérrez, R., Bajo, R., Maestú, F. and del-Pozo, F. (2013) 'HERMES: towards an integrated toolbox to characterize functional and effective brain connectivity', Neuroinformatics, vol. 11, pp. 405-434.
  26. Nolte, G., Ziehe, A., Kramer, N., Popescu, F. and Müller, K.R. (2010) 'Comparison of Granger Causality and Phase Slope Index', Journal of Machine Learning Research, vol. 6, pp. 267-276.
  27. Ogawa, S., Lee, T.M., Nayak, A.S. and Glynn, P. (1990) 'Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields', Magnetic Resonance in Medicine, vol. 14, no. 1, pp. 68-78.
  28. Orrison, W.W. (2008) Atlas of Brain Function, Illustrated edition, New York: Thieme.
  29. Papo, D., Buldu, J.M., Boccaletti, S. and Bullmore, E.T. (2013) 'Complex network theory and the brain', Philosophical Transactions of the Royal Society B, vol. 369, pp. 1-7.
  30. Peters, R. (2005) 'Ageing and the brain', Postgraduate Medical Journal, vol. 82, no. 964, pp. 84-88.
  31. Rana, P., Lipor, J., Lee, H., van Drongelen, W., Kohrman, M.H. and Van Veen, B. (2012) 'Seizure detection using the phase-slope index and multichannel ECoG.78, IEEE Transactions on Biomedical Engineering, vol. 59, no. 4, pp. 1125-1134.
  32. Rescorla, M. (2015) The Computational Theory of Mind, 7th edition, Stanford: The Stanford Encyclopedia of Philosophy.
  33. Rubinov, M., Sporns, O., Thivierge, J.P. and Breakspear, M. (2011) 'Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons', Public library of Science Computational Biology, vol. 7, no. 6, pp. 1-14.
  34. Salat, D.H., Tuch, D.S., Greve, D.N., van der Kouwe, A.J., Hevelone, N.D., Zaleta, A.K., Rosen, B.R., Fischl, B., Corkin, S., Rosas, H.D. and Dale, A.M. (2005) 'Agerelated alterations in white matter microstructure measured by diffusion tensor imaging', Neurobiology of Aging, vol. 26, pp. 1215-1227.
  35. Schafer, C.B., Morgan, B.R., Ye, A.X., Taylor, M. and Doesburg, S.M. (2014) 'Oscillations, networks and their development: MEG connectivity changes with age', Human Brain Mapping, vol. 35, no. 10, pp. 5249-5261.
  36. Schwarz, G. (1978) 'Estimating the dimension of a model', Annals off Statistics, vol. 6, no. 2, pp. 461-464.
  37. Seth, A.K., Barrett, A.B. and Barnett, L. (2015) 'Granger Causality Analysis in Neuroscience and Neuroimaging', The Journal of Neuroscience, vol. 35, no. 8, pp. 3293-3297.
  38. Sporns, O., Chialvo, D., Kaiser, M. and Hilgetag, C. (2004) 'Organization, development and function of complex brain network', TRENDS in Cognitive Sciences, vol. 8, no. 9, pp. 418-425.
  39. Stam, C. (2005) 'Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field', Clinical Neurophysiology, vol. 116, pp. 2266-2301.
  40. Stam, C.J., van Straaten, E.C., Van Dellen, E., Tewarie, P., Gong, G., Hillebrand, A., Meier, J. and Van Mieghem, P. (2016) 'The relation between structural and functional connectivity patterns in complex brain networks.78, International Journal of Psychophysiology, vol. 103, pp. 149-160.
  41. Winkler, I., Haufe, S., Porbadnigk, A.K., Muller, K.R. and Dahne, S. (2015) 'Identifying Granger causal relationships between neural power dynamics and variables of interest', NeuroImage, vol. 111, pp. 489- 504.
Download


Paper Citation


in Harvard Style

Shumbayawonda E., Fernández A., Escudero J., Hughes M. and Abásolo D. (2017). Characterisation of Resting Brain Network Topologies across the Human Lifespan with Magnetoencephalogram Recordings: A Phase Slope Index and Granger Causality Comparison Study . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017) ISBN 978-989-758-212-7, pages 118-125. DOI: 10.5220/0006104201180125


in Bibtex Style

@conference{biosignals17,
author={Elizabeth Shumbayawonda and Alberto Fernández and Javier Escudero and Michael Pycraft Hughes and Daniel Abásolo},
title={Characterisation of Resting Brain Network Topologies across the Human Lifespan with Magnetoencephalogram Recordings: A Phase Slope Index and Granger Causality Comparison Study},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017)},
year={2017},
pages={118-125},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006104201180125},
isbn={978-989-758-212-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017)
TI - Characterisation of Resting Brain Network Topologies across the Human Lifespan with Magnetoencephalogram Recordings: A Phase Slope Index and Granger Causality Comparison Study
SN - 978-989-758-212-7
AU - Shumbayawonda E.
AU - Fernández A.
AU - Escudero J.
AU - Hughes M.
AU - Abásolo D.
PY - 2017
SP - 118
EP - 125
DO - 10.5220/0006104201180125