Quality Enhancement Techniques for Building Models Derived from Sparse Point Clouds

Steffen Goebbels, Regina Pohle-Fröhlich

Abstract

This paper describes processing steps that improve both geometric consistency and appearance of CityGML models. In addition to footprints from cadastral data and sparse point clouds obtained from airborne laser scanning, we use true orthophotos to better detect and model edges. Also, procedures to heal self-intersection of polygons and non-planarity of roof facets are presented. Additionally, the paper describes an algorithm to cut off invisible parts of walls. We incorporate these processing steps into our data based framework for building model generation from sparse point clouds. Results are presented for German cities of Krefeld and Leverkusen.

References

  1. Alam, N., Wagner, D., Wewetzer, M., von Falkenhausen, J., Coors, V., and Pries, M. (2013). Towards automatic validation and healing of CityGML models for geometric and semantic consistency. ISPRS Ann. Photogramm. Remote Sens. and Spatial Inf. Sci., II2/W1:1-6.
  2. Arefi, H. and Reinartz, P. (2013). Building reconstruction using dsm and orthorectified images. Remote Sens., 5(4):1681-1703.
  3. Arikan, M., Schwärzler, M., Flöry, S., Wimmer, M., and Maierhofer, S. (2013). O-snap: Optimization-based snapping for modeling architecture. ACM Trans. Graph., 32(1):6:1-6:15.
  4. Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., and C¸ öltekin, A. (2015). Applications of 3d city models: State of the art review. ISPRS Int. J. Geo-Inf., 4:2842- 2889.
  5. Boeters, R., Ohori, K. A., Biljecki, F., and Zlatanova, S. (2015). Automatically enhancing CityGML lod2 models with a corresponding indoor geometry. International Journal of Geographical Information Science, 29(12):2248-2268.
  6. Bogdahn, J. and Coors, V. (2010). Towards an automated healing of 3d urban models. In H., K. T., G., K., and C., N., editors, Proceedings of international conference on 3D geoinformation, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, pages 13-17.
  7. Bouaziz, S., Deuss, M., Schwartzburg, Y., Weise, T., and Pauly, M. (2012). Shape-up: Shaping discrete geometry with projections. Computer Graphics Forum, 31(5):1657-1667.
  8. Demir, I., Aliaga, D. G., and Benes, B. (2015). Procedural editing of 3d building point clouds. In 2015 IEEE International Conference on Computer Vision (ICCV), pages 2147-2155, Washington, DC. IEEE Computer Society.
  9. B., Bouaziz, S., Deuss, M., Kaspar, A., Schwartzburg, Y., and Pauly, M. (2015). Interactive design exploration for constrained meshes. Comput.
  10. Aided Des., 61(C):13-23.
  11. Elbrink, S. O. and Vosselman, G. (2009). Building reconstruction by target based graph matching on incomplete laser data: analysis and limitations. Sensors, 9(8):6101-6118.
  12. Finlayson, G. D., Hordley, S. D., and Drew, M. S. (2002). Removing shadows from images. In Proceedings of the 7th European Conference on Computer VisionPart IV, ECCV 7802, pages 823-836, Berlin. Springer.
  13. Goebbels, S., Pohle-Fröhlich, R., and Rethmann, J. (2017). Planarization of CityGML models using a linear program. In Operations Research Proceedings (OR 2016 Hamburg), pages 1-6, Berlin. Springer, to appear.
  14. Goebbels, S. and Pohle-Fröhlich, R. (2016). Roof reconstruction from airborne laser scanning data based on image processing methods. ISPRS Ann. Photogramm. Remote Sens. and Spatial Inf. Sci., III-3:407-414.
  15. Gröger, G. and Plümer, L. (2009). How to achieve consistency for 3d city models. ISPRS Int. J. Geo-Inf., 15(1):137-165.
  16. Gröger, G., Kolbe, T. H., Nagel, C., and Häfele, K. H. (2012). OpenGIS City Geography Markup Language (CityGML) Encoding Standard. Version 2.0.0. Open Geospatial Consortium.
  17. Guo, R., Dai, Q., and Hoiem, D. (2011). Single-image shadow detection and removal using paired regions. In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 7811, pages 2033-2040, Washington, DC. IEEE Computer Society.
  18. Haala, N. and Kada, M. (2010). An update on automatic 3d building reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 65:570-580.
  19. He, Y. (2015). Automated 3D Building Modeling from Airborne LiDAR Data (PhD thesis). University of Melbourne, Melbourne.
  20. Henn, A., Gröger, G., Stroh, V., and Plümer, L. (2013). Model driven reconstruction of roofs from sparse LIDAR point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 76:17-29.
  21. Kada, M. and Wichmann, A. (2013). Feature-driven 3d building modeling using planar halfspaces. ISPRS Ann. Photogramm. Remote Sens. and Spatial Inf. Sci., II-3/W3:37-42.
  22. Makhorin, A. (2009). The GNU Linear Programming Kit (GLPK). Free Software Foundation, Boston, MA.
  23. Mesnil, R., Douthe, C., Baverel, O., and Léger, B. (2016). From descriptive geometry to fabrication-aware design. In Adriaenssens, S., abd M. Kohler, F. G., Menges, A., and Pauly, M., editors, Advances in Architectural Geometry, pages 62-81, Z ürich. vdf Hochschulverlag.
  24. Nan, L., Sharf, A., Zhang, H., Cohen-Or, D., and Chen, B. (2010). Smartboxes for interactive urban reconstruction. ACM Trans. Graph., 29(4):93:1-93:10.
  25. Perera, S. N. and Maas, N. G. (2012). A topology based approach for the generation and regularization of roof outlines in airborne laser scanning data. In Seyfert, E., editor, DGPF Tagungsband 21, pages 400-409, Potsdam. DGPF.
  26. SIG3D (2014). Handbuch für die Modelierung von 3D Objekten, Teil 1: Grundlagen. Geodateninfrastruktur Deutschland, 0.7.1 edition.
  27. Tang, C., Sun, X., Gomes, A., Wallner, J., and Pottmann, H. (2014). Form-finding with polyhedral meshes made simple. ACM Trans. Graph., 33(4):70:1-70:9.
  28. Tarsha-Kurdi, F., Landes, T., Grussenmeyer, P., and Koehl, M. (2007). Model-driven and data-driven approaches using LIDAR data: Analysis and comparison. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(3/W49A):87-92.
  29. Tong, L., Li, M., Chen, Y., Wang, Y., Zhang, W., and Cheng, L. (2012). A research on 3d reconstruction of building rooftop models from LiDAR data and orthophoto. In Proceedings of the 20th International Conference on Geoinformatics (GEOINFORMATICS), Hong Kong, pages 1-5, Washington, DC. IEEE Computer Society.
  30. Wagner, D., Wewetzer, M., Bogdahn, J., Alam, N., Pries, M., and Coors, V. (2013). Geometric-semantical consistency validation of CityGML models. In Pouliot, J. and et. al., editors, Progress and New Trends in 3D Geoinformation Sciences, Lecture notes in geoinformation and cartography, pages 171-192, Berlin. Springer.
  31. Wichmann, A. and Kada, M. (2016). Joint simultaneous reconstruction of regularized building superstructures from low-density LIDAR data using icp. ISPRS Ann. Photogramm. Remote Sens. and Spatial Inf. Sci., III3:371-378.
  32. Zhao, J., Stoter, J., and Ledoux, H. (2013). A framework for the automatic geometric repair of CityGML models. In Buchroithner, M., Prechtel, N., and Burghardt, D., editors, Cartography from Pole to Pole, Lecture Notes in Geoinformation and Cartography, pages 187-202, Berlin. Springer.
Download


Paper Citation


in Harvard Style

Goebbels S. and Pohle-Fröhlich R. (2017). Quality Enhancement Techniques for Building Models Derived from Sparse Point Clouds . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017) ISBN 978-989-758-224-0, pages 93-104. DOI: 10.5220/0006103300930104


in Bibtex Style

@conference{grapp17,
author={Steffen Goebbels and Regina Pohle-Fröhlich},
title={Quality Enhancement Techniques for Building Models Derived from Sparse Point Clouds},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017)},
year={2017},
pages={93-104},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006103300930104},
isbn={978-989-758-224-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017)
TI - Quality Enhancement Techniques for Building Models Derived from Sparse Point Clouds
SN - 978-989-758-224-0
AU - Goebbels S.
AU - Pohle-Fröhlich R.
PY - 2017
SP - 93
EP - 104
DO - 10.5220/0006103300930104