Cost Adaptive Window for Local Stereo Matching

J. Navarro, A. Buades

Abstract

We present a novel stereo block-matching algorithm which uses adaptive windows. The shape of the window is selected to minimize the matching cost. Such a window might be the less distorted by the disparity function and thus the optimal one for matching. Moreover, we introduce a coarse-to-fine strategy to limit the number of ambiguous matches and reduce the computational cost. The proposed approach performs as state of the art local matching methods.

References

  1. Birchfield, S. and Tomasi, C. (1998). A pixel dissimilarity measure that is insensitive to image sampling. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(4):401-406.
  2. Blanchet, G., Buades, A., Coll, B., Morel, J.-M., and Rougé, B. (2011). Fattening free block matching. Journal of mathematical imaging and vision, 41(1- 2):109-121.
  3. Bleyer, M., Rhemann, C., and Rother, C. (2011). Patchmatch stereo-stereo matching with slanted support windows. In BMVC, volume 11, pages 1-11.
  4. Buades, A. and Facciolo, G. (2015). Reliable multiscale and multiwindow stereo matching. SIAM Journal on Imaging Sciences, 8(2):888-915.
  5. Einecke, N. and Eggert, J. (2010). A two-stage correlation method for stereoscopic depth estimation. In Digital Image Computing: Techniques and Applications (DICTA), 2010 International Conference on, pages 227-234. IEEE.
  6. Fusiello, A., Roberto, V., and Trucco, E. (1997). Efficient stereo with multiple windowing. In cvpr, page 858. IEEE.
  7. Gerrits, M. and Bekaert, P. (2006). Local stereo matching with segmentation-based outlier rejection. In Computer and Robot Vision, 2006. The 3rd Canadian Conference on, pages 66-66. IEEE.
  8. Hannah, M. J. (1974). Computer matching of areas in stereo images. Technical report, DTIC Document.
  9. He, K., Sun, J., and Tang, X. (2010). Guided image filtering. In Computer Vision-ECCV 2010 , pages 1-14. Springer.
  10. Hirschmüller, H. (2008). Stereo processing by semiglobal matching and mutual information. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(2):328-341.
  11. Hirschmüller, H., Innocent, P. R., and Garibaldi, J. (2002). Real-time correlation-based stereo vision with reduced border errors. International Journal of Computer Vision, 47(1-3):229-246.
  12. Hirschmüller, H. and Scharstein, D. (2009). Evaluation of stereo matching costs on images with radiometric differences. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(9):1582-1599.
  13. Hosni, A., Bleyer, M., and Gelautz, M. (2013). Secrets of adaptive support weight techniques for local stereo matching. Computer Vision and Image Understanding, 117(6):620-632.
  14. Kanade, T. and Okutomi, M. (1994). A stereo matching algorithm with an adaptive window: Theory and experiment. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 16(9):920-932.
  15. Kang, S. B., Szeliski, R., and Chai, J. (2001). Handling occlusions in dense multi-view stereo. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages I-103. IEEE.
  16. Kolmogorov, V. and Zabih, R. (2001). Computing visual correspondence with occlusions using graph cuts. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, volume 2, pages 508-515. IEEE.
  17. Kowalczuk, J., Psota, E. T., and Perez, L. C. (2013). Realtime stereo matching on cuda using an iterative refinement method for adaptive support-weight correspondences. IEEE transactions on circuits and systems for video technology, 23(1):94-104.
  18. Lu, J., Yang, H., Min, D., and Do, M. (2013). Patch match filter: Efficient edge-aware filtering meets randomized search for fast correspondence field estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1854-1861.
  19. Manduchi, R. and Tomasi, C. (1999). Distinctiveness maps for image matching. In iciap, page 26. IEEE.
  20. Patricio, M. P., Cabestaing, F., Colot, O., and Bonnet, P. (2004). A similarity-based adaptive neighborhood method for correlation-based stereo matching. In Image Processing, 2004. ICIP'04. 2004 International Conference on, volume 2, pages 1341-1344. IEEE.
  21. Psota, E. T., Kowalczuk, J., Mittek, M., and Perez, L. C. (2015). Map disparity estimation using hidden markov trees. In Proceedings of the IEEE International Conference on Computer Vision, pages 2219- 2227.
  22. Rhemann, C., Hosni, A., Bleyer, M., Rother, C., and Gelautz, M. (2011). Fast cost-volume filtering for visual correspondence and beyond. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 3017-3024. IEEE.
  23. Sabater, N., Almansa, A., and Morel, J.-M. (2012). Meaningful matches in stereovision. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(5):930-942.
  24. Scharstein, D. and Hirschmüller, H. (2014). Middlebury stereo evaluation version 3. http://vision.middlebury.edu/stereo/eval3/.
  25. Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(1-3):7-42.
  26. Sun, J., Zheng, N.-N., and Shum, H.-Y. (2003). Stereo matching using belief propagation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25(7):787-800.
  27. Viola, P. and Wells III, W. M. (1997). Alignment by maximization of mutual information. International journal of computer vision, 24(2):137-154.
  28. Wang, L., Liao, M., Gong, M., Yang, R., and Nister, D. (2006). High-quality real-time stereo using adaptive cost aggregation and dynamic programming. In 3D Data Processing, Visualization, and Transmission, Third International Symposium on, pages 798-805. IEEE.
  29. Wang, Z.-F. and Zheng, Z.-G. (2008). A region based stereo matching algorithm using cooperative optimization. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1-8. IEEE.
  30. Yoon, K.-J. and Kweon, I. S. (2006). Adaptive supportweight approach for correspondence search. IEEE Transactions on Pattern Analysis & Machine Intelligence, (4):650-656.
  31. Zabih, R. and Woodfill, J. (1994). Non-parametric local transforms for computing visual correspondence. In Computer VisionECCV'94, pages 151-158. Springer.
Download


Paper Citation


in Harvard Style

Navarro J. and Buades A. (2017). Cost Adaptive Window for Local Stereo Matching . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 6: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-227-1, pages 369-376. DOI: 10.5220/0006100503690376


in Bibtex Style

@conference{visapp17,
author={J. Navarro and A. Buades},
title={Cost Adaptive Window for Local Stereo Matching},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 6: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={369-376},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006100503690376},
isbn={978-989-758-227-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 6: VISAPP, (VISIGRAPP 2017)
TI - Cost Adaptive Window for Local Stereo Matching
SN - 978-989-758-227-1
AU - Navarro J.
AU - Buades A.
PY - 2017
SP - 369
EP - 376
DO - 10.5220/0006100503690376