Moving Bragg Grating Solitons in a Grating-assisted Coupler with Cubic-Quintic Nonlinearity

Md. Jahirul Islam, Javid Atai

Abstract

We analyze the existence and stability of moving Bragg grating solitons in a semilinear coupled system where one core is equipped with a Bragg grating and has cubic-quintic nonlinearity and the other is linear. The system's linear spectrum contains three bandgaps, namely the upper, lower and central gaps. The bandgap edges shift with the soliton velocity ($s$) and group velocity mismatch term ($c$) for a given coupling coefficient ($\kappa$), and result in change in the spectral widths. Two families of moving Bragg grating solitons (referred to as Type 1 and Type 2) are found that fill the upper and lower gaps only. No moving solitons are found in the central gap. The border separating the two families depends on both $c$ and $s$, and is determined numerically. We carried out systematic numerical stability analysis of the moving solitons and identified non-trivial stability borders in their parametric plane. The analysis also reveals that vast areas of stable Type 1 solitons exist in the system's parametric plane and that all Type 2 solitons are unstable.

References

  1. Aceves, A. and Wabnitz, S. (1989). Self-induced transparency solitons in nonlinear refractive periodic media. Phys. Lett. A, 141(1):37-42.
  2. Atai, J. and Chen, Y. (1992). Nonlinear couplers composed of different nonlinear cores. J. Appl. Phys., 59(1):24- 27.
  3. Atai, J. and Malomed, B. A. (2000). Bragg-grating solitons in a semilinear dual-core system. Phys. Rev. E, 62:8713-8718.
  4. Atai, J. and Malomed, B. A. (2001). Families of Bragggrating solitons in a cubic-quintic medium. Phys. Lett. A, 284(6):247-252.
  5. Atai, J. and Malomed, B. A. (2002). Spatial solitons in a medium composed of self-focusing and selfdefocusing layers. Phys. Lett. A, 298(2-3):140 - 148.
  6. Atai, J., Malomed, B. A., and Merhasin, I. M. (2006). Stability and collisions of gap solitons in a model of a hollow optical fiber. Opt. Commun., 265(1):342-348.
  7. Atai, Javid; Chen, Y. (1993). Nonlinear mismatches between two cores of saturable nonlinear couplers. IEEE J. Quantum Electron., 29(1):242-249.
  8. Christadoulides, D. N. and Joseph, R. I. (1989). Slow bragg solitons in nonlinear periodic structures. Phys. Rev. Lett., 62:1746-1749.
  9. Conti, C., Trillo, S., and Assanto, G. (1997). Doubly resonant bragg simultons via second-harmonic generation. Phys. Rev. Lett., 78:2341-2344.
  10. Desterke, C. M. and Sipe, J. E. (1994). Gap solitons. Progress in Optics, 33:203-260.
  11. Dong, R., Rüter, C. E., Kip, D., Cuevas, J., Kevrekidis, P. G., Song, D., and Xu, J. (2011). Dark-bright gap solitons in coupled-mode one-dimensional saturable waveguide arrays. Phys. Rev. A, 83:063816.
  12. Fraga, W. B., Menezes, J. W. M., da Silva, M. G., Sobrinho, C. S., and Sombra, A. S. B. (2006). All optical logic gates based on an asymmetric nonlinear directional coupler. Opt. Commun., 262(1):32-37.
  13. He, H. and Drummond, P. D. (1997). Ideal soliton environment using parametric band gaps. Phys. Rev. Lett., 78:4311-4315.
  14. Islam, M. J. and Atai, J. (2015). Stability of gap solitons in dual-core Bragg gratings with cubic-quintic nonlinearity. Laser Phys. Lett., 12(1):015401.
  15. Jensen, S. (1982). The nonlinear coherent coupler. IEEE J. Quantum Electron., 18(10):1580-1583.
  16. Kaup, D. J. and Malomed, B. A. (1998). Gap solitons in asymmetric dual-core nonlinear optical fibers. J. Opt. Soc. Am B, 15(12):2838-2846.
  17. Mak, W. C. K., Chu, P. L., and Malomed, B. A. (1998a). Solitary waves in coupled nonlinear waveguides with Bragg gratings. J. Opt. Soc. Am. B, 15(6):1685-1692.
  18. Mak, W. C. K., Malomed, and Chu, P. L. (1998b). Asymmetric solitons in coupled second-harmonicgenerating waveguides. Phys. Rev. E, 57:1092-1103.
  19. Mak, W. C. K., Malomed, B. A., and Chu, P. L. (2003). Formation of a standing-light pulse through collision of gap solitons. Phys. Rev. E, 68(2 Pt 2):026609.
  20. Mak, W. C. K., Malomed, B. A., and Chu, P. L. (2004). Symmetric and asymmetric solitons in linearly coupled Bragg gratings. Phys. Rev. E, 69(6 Pt 2):066610.
  21. Mayteevarunyoo, T. and Malomed, B. A. (2008). Gap solitons in grating superstructures. Opt. Express, 16(11):7767-7777.
  22. Mok, J. T., Desterke, C. M., Litler, I. C. M., and Eggleton, B. J. (2006). Dispersionless slow light using gap solitons. Nat. Phys., 2:775-780.
  23. Neill, D. R. and Atai, J. (2007). Gap solitons in a hollow optical fiber in the normal dispersion regime. Phys. Lett. A, 367:73-82.
  24. Skryabin, D. V. (2004). Coupled core-surface solitons in photonic crystal fibers. Opt. Express, 12(20):4841- 4846.
  25. Tsofe, Y. J. and Malomed, B. A. (2007). Quasisymmetric and asymmetric gap solitons in linearly coupled Bragg gratings with a phase shift. Phys. Rev. E, 75(5 Pt 2):056603.
Download


Paper Citation


in Harvard Style

Jahirul Islam M. and Atai J. (2017). Moving Bragg Grating Solitons in a Grating-assisted Coupler with Cubic-Quintic Nonlinearity . In Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-758-223-3, pages 44-48. DOI: 10.5220/0006098800440048


in Bibtex Style

@conference{photoptics17,
author={Md. Jahirul Islam and Javid Atai},
title={Moving Bragg Grating Solitons in a Grating-assisted Coupler with Cubic-Quintic Nonlinearity},
booktitle={Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},
year={2017},
pages={44-48},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006098800440048},
isbn={978-989-758-223-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - Moving Bragg Grating Solitons in a Grating-assisted Coupler with Cubic-Quintic Nonlinearity
SN - 978-989-758-223-3
AU - Jahirul Islam M.
AU - Atai J.
PY - 2017
SP - 44
EP - 48
DO - 10.5220/0006098800440048