A Three-dimensional Error-diffusion Algorithm for Importance Sampling with Blue-noise Property

Ke Wang, Jiaojiao Zhao, Jie Feng, Bingfeng Zhou

Abstract

We propose a novel discrete three-dimensional sampling algorithm based on the error-diffusion method, which can generate sampling points with blue-noise property. To obtain sampling points with a high quality blue-noise spectrum in 3D domain, we introduce an effective metric for the 3D blue-noise property based on 3D Fourier transform. Then, a cost function used for the search of optimal parameters, including optimal diffusion coefficients and threshold modulation strength values, is designed to guarantee the blue-noise property of sampling points. Experiments show that our algorithm is able to generate sampling points with uniform and random distribution, which possess 3D blue-noise property, and supports importance sampling in three dimensional domain. Comparing with similar work, our algorithm can achieve sampling point distribution that possesses better isotropic properties and has lower time cost in 3D discrete domain. Several applications including volume rendering and tetrahedral meshing are also explored.

References

  1. Alliez, P., Meyer, M., and Desbrun, M. (2002). Interactive geometry remeshing. ACM Transactions on Graphics, 21(3):347-354.
  2. Bourguignon, D., Chaine, R., Cani, M.-P., and Drettakis, G. (2004). Relief: A modeling by drawing tool. In Proceedings of the First Eurographics Conference on Sketch-Based Interfaces and Modeling, SBM'04, pages 151-160, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
  3. Cohen, M. F., Shade, J., Hiller, S., and Deussen, O. (2003). Wang tiles for image and texture generation. Acm Transactions on Graphics, 22(3):287-294.
  4. Cook, R. L. (1986). Stochastic sampling in computer graphics. Acm Transactions on Graphics, 5(1):51-72.
  5. Csebfalvi, B. and Szirmay-Kalos, L. (2003). Monte carlo volume rendering. In Proc. IEEE Visualization 2003, pages 449-456.
  6. Dippé, M. A. Z. and Wold, E. H. (1985). Antialiasing through stochastic sampling. SIGGRAPH Computer Graphics, 19(3):69-78.
  7. Du, Q., Faber, V., and Gunzburger, M. (1999). Centroidal voronoi tessellations: Applications and algorithms. SIAM Review, 41:637-676.
  8. Ebeida, M. S., Davidson, A. A., Patney, A., Knupp, P. M., Mitchell, S. A., and Owens, J. D. (2011). Efficient maximal poisson-disk sampling. Acm Transactions on Graphics, 30(4):76-79.
  9. Ebeida, M. S., Mitchell, S. A., Patney, A., Davidson, A. A., and Owens, J. D. (2012). A simple algorithm for maximal poisson-disk sampling in high dimensions. Computer Graphics Forum, 31(2):785-794.
  10. Floyd, R. W. and Steinberg, L. (1976). An Adaptive Algorithm for Spatial Greyscale. Proceedings of the Society for Information Display, 17(2):75-77.
  11. Gamito, M. N. and Maddock, S. C. (2009). Accurate multidimensional poisson-disk sampling. ACM Transactions on Graphics, 29(1):8:1-8:19.
  12. Gonzalez, R. C., Woods, R. E., and Eddins, S. L. (2004). Digital image processing using matlab. Ann.rev.fluid Mech, 21(84):197-199.
  13. Gröller, M. E., Glaeser, G., and Kastner, J. (2005). Stag beetle dataset. https://www.cg.tuwien.ac.at/research /publications/2005/dataset-stagbeetle/.
  14. Guo, J., Yan, D. M., Chen, L., Zhang, X., Deussen, O., and Wonka, P. (2016). Tetrahedral meshing via maximal poisson-disk sampling. Computer Aided Geometric Design, 43:186-199.
  15. Heinzl, C. (2006). Christmas present dataset. https://www. cg.tuwien.ac.at/research/publications/2006/datasetpresent/.
  16. Jiang, M., Zhou, Y., Wang, R., Southern, R., and Zhang, J. J. (2015). Blue noise sampling using an sph-based method. ACM Transactions on Graphics (TOG), 34(6):211.
  17. Ju, T., Schaefer, S., and Warren, J. (2005). Mean value coordinates for closed triangular meshes. ACM Transactions on Graphics, 24(3):561-566.
  18. Kanitsar, A. (2002). Christmas tree dataset. https://www.cg. tuwien.ac.at/research/publications/2002/datasetchristmastree/.
  19. Kim, S. Y., Maciejewski, R., Isenberg, T., Andrews, W. M., Chen, W., Sousa, M. C., and Ebert, D. S. (2009). Stippling by example. In Proc. the 7th International Symposium on Non-Photorealistic Animation and Rendering, NPAR 7809, pages 41-50.
  20. Knox, K. T. and Eschbach, R. (1993). Threshold modulation in error diffusion. Journal of Electronic Imaging, 2(3):185-192.
  21. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21(6):1087-1092.
  22. Novelline and Fisher, M. (2004). Squire's fundamentals of radiology, 6th ed.
  23. Ostromoukhov, V. (2001). A simple and efficient errordiffusion algorithm. In Proc. the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 7801, pages 567-572, New York, NY, USA. ACM.
  24. Ostromoukhov, V., Donohue, C., and Jodoin, P.-M. (2004). Fast hierarchical importance sampling with blue noise properties. ACM Transactions on Graphics, 23(3):488-495.
  25. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in C (2nd Ed.): The Art of Scientific Computing . Cambridge University Press, New York, NY, USA.
  26. Sakamoto, N., Nonaka, J., Koyamada, K., and Tanaka, S. (2007). Particle-based volume rendering. In Proc. Int'l Asia-Pacific Symposium on Visualization 2007 , APVIS 7807, pages 129-132.
  27. Si, H. (2015). Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw., 41(2):11:1-11:36.
  28. Ulichney, R. (1987). Digital Halftoning. MIT Press, Cambridge, MA.
  29. Wei, L.-Y. (2008). Parallel poisson disk sampling. ACM Transactions on Graphics, 27(3):20:1-20:9.
  30. White, K. B., Cline, D., and Egbert, P. K. (2007). Poisson disk point sets by hierarchical dart throwing. In Proc. IEEE Symposium on Interactive Ray Tracing, pages 129-132.
  31. Yan, D.-M., Guo, J.-W., Wang, B., Zhang, X.-P., and Wonka, P. (2015). A survey of blue-noise sampling and its applications. Journal of Computer Science and Technology, 30(3):439-452.
  32. Zhong, Z. and Hua, J. (2016). Kernel-based adaptive sampling for image reconstruction and meshing. Computer Aided Geometric Design, 43:68-81.
  33. Zhou, B. and Fang, X. (2003). Improving midtone quality of variable-coefficient error diffusion using threshold modulation. ACM Transactions on Graphics, 22(3):437-444.
Download


Paper Citation


in Harvard Style

Wang K., Zhao J., Feng J. and Zhou B. (2017). A Three-dimensional Error-diffusion Algorithm for Importance Sampling with Blue-noise Property . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017) ISBN 978-989-758-224-0, pages 70-81. DOI: 10.5220/0006097700700081


in Bibtex Style

@conference{grapp17,
author={Ke Wang and Jiaojiao Zhao and Jie Feng and Bingfeng Zhou},
title={A Three-dimensional Error-diffusion Algorithm for Importance Sampling with Blue-noise Property},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017)},
year={2017},
pages={70-81},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006097700700081},
isbn={978-989-758-224-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017)
TI - A Three-dimensional Error-diffusion Algorithm for Importance Sampling with Blue-noise Property
SN - 978-989-758-224-0
AU - Wang K.
AU - Zhao J.
AU - Feng J.
AU - Zhou B.
PY - 2017
SP - 70
EP - 81
DO - 10.5220/0006097700700081