Confidence-Aware Probability Hypothesis Density Filter for Visual Multi-Object Tracking

Nicolai Wojke, Dietrich Paulus

Abstract

The Probability Hypothesis Density Filter (PHD) filter is an efficient recursive multi-object state estimator that systematically deals with data association uncertainty. In this paper, we apply the PHD filter in a tracking-bydetection framework. In order to mimic state-dependent false alarms, we introduce an adapted PHD recursion that defines clutter generators in state space. Further, we integrate detector confidence scores into the measurement likelihood. This extension is quite effective yet simple, which means that it requires few changes to the original PHD recursion, that it has the same computational complexity, and that there exist few parameters that must be adapted to the individual tracking scenario. Our evaluation on a popular pedestrian tracking dataset demonstrates results that are competitive with the state-of-the-art.

References

  1. Andriyenko, A., Schindler, K., and Roth, S. (2012). Discrete-continuous optimization for multi-target tracking. In CVPR, pages 1926-1933.
  2. Berclaz, J., Fleuret, F., T üretken, E., and Fua, P. (2011). Multiple object tracking using k-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell., 33(9):1806-1819.
  3. Bernardin, K. and Stiefelhagen, R. (2008). Evaluating multiple object tracking performance: The CLEAR MOT metrics. EURASIP J. Image Video Process, 2008.
  4. Breitenstein, M. D., Reichlin, F., Leibe, B., Koller-Meier, E., and Van Gool, L. (2011). Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE Trans. Pattern Anal. Mach. Intell., 33(9):1820-1833.
  5. Dehghan, A., Tian, Y., Torr, P. H., and Mubarak, S. (2015). Target identity-aware network flow for online multiple target tracking. In CVPR, pages 1146-1154.
  6. Ferryman, J. and Shahrokni, A. (2009). An overview of the PETS 2009 challenge. In PETS.
  7. Kim, C., Li, F., Ciptadi, A., and Rehg, J. M. (2015). Multiple hypothesis tracking revisited. In ICCV, pages 4696-4704.
  8. Leal-Taixé, L., Milan, A., Reid, I., Roth, S., and Schindler, K. (2015). MOTChallenge 2015: Towards a benchmark for multi-target tracking. arXiv:1504.01942 [cs].
  9. Maggio, E. and Cavallaro, A. (2009). Learning scene context for multiple object tracking. IEEE Trans. Image Process., 18(8):1873-1884.
  10. Mahler, R. (2003). Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans. Aerosp. Electron. Syst., 39(4):1152-1178.
  11. Mahler, R. (2007). Statistical Multisource-Multitarget Information Fusion. Artech House, Norwood, MA, USA.
  12. Mahler, R. (2014). Advances in statistical multisourcemultitarget information fusion. Artech House, Norwood, MA, USA.
  13. Mahler, R., Vo, B.-T., and Vo, B.-N. (2011). CPHD filtering with unknown clutter rate and detection profile. IEEE Trans. Signal Process., 59(8):3497-3513.
  14. Milan, A., Schindler, K., and Roth, S. (2013). Detectionand trajectory-level exclusion in multiple object tracking. In CVPR, pages 3682-3689.
  15. Pirsiavash, H., Ramanan, D., and Fowlkes, C. C. (2011). Globally-optimal greedy algorithms for tracking a variable number of objects. In CVPR, pages 1201- 1208.
  16. Poiesi, F., Mazzon, R., and Cavallaro, A. (2013). Multitarget tracking on confidence maps: An application to people tracking. Comput. Vis. Image Und., 117(10):1257-1272.
  17. Reid, D. B. (1979). An algorithm for tracking multiple targets. IEEE Trans. Autom. Control, 24(6):843-854.
  18. Rezatofighi, S., Milan, A., Zhang, Z., Shi, Q., Dick, A., and Reid, I. (2015). Joint probabilistic data association revisited. In ICCV, pages 3047-3055.
  19. Ristic, B., Clark, D., Vo, B.-N., and Vo, B.-T. (2012). Adaptive target birth intensity for PHD and CPHD filters. IEEE Trans. Aerosp. Electron. Syst., 48(2):1656- 1668.
  20. Segal, A. and Reid, I. (2013). Latent data association: Bayesian model selection for multi-target tracking. In ICCV, pages 2904-2911.
  21. Wojke, N. and Paulus, D. (2016). Global data association for the probability hypothesis density filter using network flows. In ICRA, pages 567-572.
  22. Zhang, L., Li, Y., and Nevatia, R. (2008). Global data association for multi-object tracking using network flows. In CVPR, pages 1-8.
Download


Paper Citation


in Harvard Style

Wojke N. and Paulus D. (2017). Confidence-Aware Probability Hypothesis Density Filter for Visual Multi-Object Tracking . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 6: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-227-1, pages 132-139. DOI: 10.5220/0006095801320139


in Bibtex Style

@conference{visapp17,
author={Nicolai Wojke and Dietrich Paulus},
title={Confidence-Aware Probability Hypothesis Density Filter for Visual Multi-Object Tracking},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 6: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={132-139},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006095801320139},
isbn={978-989-758-227-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 6: VISAPP, (VISIGRAPP 2017)
TI - Confidence-Aware Probability Hypothesis Density Filter for Visual Multi-Object Tracking
SN - 978-989-758-227-1
AU - Wojke N.
AU - Paulus D.
PY - 2017
SP - 132
EP - 139
DO - 10.5220/0006095801320139