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Abstract: In this paper, we use the Factor Analysis (FA) to determine the node ordering as an input for K2 algorithm 
in the task of learning Bayesian network structure. For this purpose, we use the communality concept in 
factor analysis. Communality indicates the proportion of each variable's variance that can be explained by 
the retained factors. This method is much easier than ordering-based approaches which do explore the 
ordering space. Because it depends only on the correlation matrix. As well, experimental results over 
benchmark networks ‘Alarm’ and ‘Hailfinder’ show that our new method has higher accuracy and better 
degree of data matching.  

1 INTRODUCTION 

Bayesian networks (BNs) are directed acyclic graphs 
(DAGs), where the nodes are random variables, and 
the arcs specify the conditional independence 
structure between the random variables (Pearl, 1988; 
Geiger, 1990; Jensen, 1996; Friedman, 1997). The 
learning task  in a BN  can  be separated  into  two 
subtasks,  structure  learning; that  is  to identify  the 
topology  of  the  network, and parameter learning; 
that is to estimate the parameters (conditional 
probabilities) for a given network topology 
(Heckerman, 1994; Ghahramani, 1998; Grossman, 
2004).  While there are large collections of variables 
in many applications, a fully BN approach for 
learning structure upon variables can be expensive 
and lead to high dimensional models (Friedman, 
2000; Perrier, 2008). In other words, the number of 
BN structures is super-exponential in the number of 
random variables in the domain. To overcome such 
difficulties in terms of computational complexity, 
several approximations have been designed, such as 
imposing a previous ordering on the domain 
attributes or using other approaches trying to reduce 
the state space of this problem (Spirtes, 1993; 
Madigan, 1995). The K2 algorithm is one of the 
basic methods for effectively resolving the above 
problems (Cooper, 1992). This algorithm works with 
a node ordering as an input.  It starts by assuming 
that a node lacks parents, after which in every step it 

adds incrementally that parent whose addition most 
increases the probability of the resulting structure.  
K2 stops adding parents to the nodes when the 
addition of a single parent cannot increase the 
probability. As mentioned, the K2 algorithm 
receives as input a total ordering of the variables 
which can have a big influence on its result. Thus, 
finding a good ordering of the variables is also 
crucial for the algorithm success (Larranaga, 1996; 
Ruiz, 2005; Lamma, 2005; Chen, 2008). 

The K2 algorithm reduces this computational 
complexity by requiring a prior ordering of nodes as 
an input, from which the network structure will be 
constructed.  

Chow & Liu, (1968) proposed a method derived 
from the maximum weight spanning tree algorithm 
(MWST). This method associates a weight to each 
edge. This weight can be either the mutual 
information between the two variables or the score 
variation when one node becomes a parent of the 
other. When the weight matrix is created, a usual 
MWST algorithm gives an undirected tree that can 
be oriented given a chosen root.  Based on the 
Heckerman et al. (1994) propose, one can use the 
oriented tree obtained with the maximum weight 
spanning tree algorithm (MWST) to generate the 
node ordering. The algorithm which uses the class 
node as a root called "K2+T" (Leray et al., 2004). 
Where the class node is the root node of the tree, the 
class node can be interpreted as a cause instead of a 

Tabar, V.
A Simple Node Ordering Method for the K2 Algorithm based on the Factor Analysis.
DOI: 10.5220/0006095702730280
In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2017), pages 273-280
ISBN: 978-989-758-222-6
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

273



consequence. That’s why Leray et al. (2004) 
proposed the reverse order called "K2-T". 

In general, node ordering algorithms are 
categorized into two groups; evolutionary algorithms 
and heuristic algorithms. Initial research on 
evolutionary algorithms has provided extensive 
experimental results through various crossover and 
mutation methods (Romero, 1994; Larranaga 1996; 
Hsu et al., 2007).  In terms of heuristic methods, 
Hruschka et al. (2007) introduced the feature 
ranking-based node ordering algorithm, which is a 
type of feature selection method in the classification 
domain. It measures dependencies of variables over 
the class label using ߯ଶ statistical tests and 
information gain; it then sorts the variables by the 
dependence-based scores. The sorted variables are 
regarded as the node ordering. Chen et al. (2008) 
incorporated information theory and exhaustive 
search functions in their algorithm. The algorithm 
comprises three major phases. In the first two 
phases, it constructs an undirected structure through 
mutual information, independence tests, and d-
separation. The last phase is related to determination 
of node ordering.  

In this paper, we focus on the factor analysis for 
determining the node ordering as an input for K2 
algorithm. The steps of our method are as follows:  

 First right number of factors must be 
extracted.  

 Once the extraction of factors has been 
completed, we use the "Communalities" 
which tells us how much of the variance in 
each of the original variables is explained 
by the extracted factors.  In other words, 
communality is the proportion of each 
variable's variance that can be explained by 
the common factors.  

 We consider the communality as a novel 
method for determining the node ordering 
as an input for K2 algorithm.  

Our novel method is much easier than ordering-
based approaches which do explore the ordering 
space. To the best of our knowledge, the most 
effective heuristic algorithm for determining the 
node ordering is the one proposed by Chen et al. 
(2008) whose time complexity is O(n4). However, 
our methodology has less complexity compared to 
other node ordering methods. Because our method 
depends only on the correlation matrix.  
The paper is organized as follows. First an 
introduction to the Factor Analysis is presented. We 
then introduce our methodology for learning BN 
structure. We finally compare our results with the 
performance of other methods such as K2+T (K2 

with MWST initialization), K2-T (K2 with MWST 
inverse initialization), Hruschka et al. method 
(2007), Chen et al. method (2008).    

2 FACTOR ANALYSIS 

Factor analysis is a method of data reduction (Kim, 
1978; Johnson, 1992).  It does this by seeking 
underlying unobserved variables (factors) that are 
reflected in the observed variables.  Therefore it is 
needed to determine the number of factors to be 
extracted.  The default in most statistical software 
packages is to retain all factors with eigenvalues 
greater than 1 (Kaiser, 1992). Alternate tests for 
factor retention include the scree test, Velicer’s 
MAP criteria, and parallel analysis.  It has been 
found that the parallel analysis commonly leads to 
accurate decision when applied to discreet data 
(Hayton, 2004).  

Horn (1965) proposes parallel analysis, a method 
based on the generation of random variables, to 
determine the number of factors to retain. Parallel 
analysis, compares the observed eigenvalues 
extracted from the correlation matrix to be analysed 
with those obtained from uncorrelated normal 
variables.  

An aim of factor analysis (FA) is to 'explain' 
correlations among observed variables in terms of a 
relatively small number of factors.  Assume the p × 
1 random vector X has mean µ and covariance 
matrix Σ. The factor model postulates that X linearly 
depend on some unobservable random variables F1, 
F2, . . . , Fm, called common factors and p additional 
sources of variation ξ1, …, ξp  called errors or 
sometimes specific factors. The factor analysis 
model is:  

X1 - ߤଵ= ݈ଵଵF1 + ݈ଵଶF2 + … + ݈ଵFm + ξ1 

X2 - ߤଶ= ݈ଶଵF1 + ݈ଶଵF2 + … + ݈ଶଵFm + ξ2 

Xp - ߤ = ݈ଵF1 + ݈ଶF2 + … +݈ Fm + ξp 

(1)

As a matrix notation, we can write: 

X-μ=LF+ξ 
 

The coefficient ݈ is called loading of the i-th 
variable on the j-th factor, so L is the matrix of 
factor loadings. Notice, that the p deviations Xi − µi 
are expressed in terms of p + m random variables 
F1,…, Fm and  ξ1 ,… ξp  which are all unobservable. 
There are too many unobservable quantities in the 
model. Hence we need further assumptions about F 
and  ξ.  We assume that:  
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E(F)=0,  Cov(F)=E(FFt)=I,  E(ξ)=0,  Cov(F, ξ)=0 ,  cov(ξ ξt)=φ =ቆ ఝభ        ….             ఝమ    …                       ….  ఝ    ቇ 

Therefore, we have (Johnson , 2002):  

Σ=Cov (X) =LLt +φ 

The decision about the number of common 
factors (m) to retain, must steer between the 
extremes of losing too much information about the 
original variables on one hand, and being left with 
too many factors on the other.  For this purpose, we 
use the parallel analysis. Because we deal with the 
discrete datasets (Hayton, 2004). Once the extraction 
of factors has been completed, we use the 
“Communalities" as a method of determining the 
ordering among variables which tells us how much 
of the variance in each of the original variables is 
explained by the common factors. That proportion of 
Var(Xi) = σii contributed by the m common factors is 
called the i-th communality ℎଶ  which can be 
defined as the sum of squared factor loadings for the 
variables. The proportion of Var(Xi) due to the 
specific factor is called the uniqueness, or specific 
variance. i.e.  

Var(Xi) = communality + specific variance 

σii= ݈ଵଶ + ݈ଶଶ + ⋯ + ݈ଶ + ߮ 
Regarding ℎଶ = ݈ଵଶ + ݈ଶଶ + ⋯ + ݈ଶ  , 

We get 

σii=  ℎଶ + ߮ 
If the data were standardized before analysis, the 

variances of the standardized variables are all equal 
to one. Then the specific variances can be computed 
by subtracting the communality from the variance as 
expressed below: ߮ = 1 − ℎଶ 

Based on the fact that variables with high values 
of communalities are well represented in the 
common factor space, we can determine the variable 
ordering. It means that the variable with high 
communality extracts the largest amount of 
information from the data. Note that one can think of 
communalities as multiple R2 values for regression 
models predicting the variables of interest from the 
common factors.  

3 STRUCURE LEARNING FOR 
BAYESIAN NETWORK   

The global joint probability distribution of the BN 
constructed by variables, given the representation of 
conditional independences by its structure and the 
set of local conditional distributions, can be written 
as: 

ܲ( ଵܺ, … , ܺ) = ෑ ܲ( ܺ|ܲܽݐ݊݁ݎ( ܺ))
ୀଵ  (2)

where ܲ( ܺ|ܲܽݐ݊݁ݎ( ܺ))  specified the 
parameter shown by ߠ|().  If we assume that ܺ  takes its ݇ − )ܽܲ ℎ value and the variables inݐ ܺ) 
take their j-th configuration thenߠ|() =  . Inߠ
theory, one could iterate over all possible BN 
structures and select the one that achieves the best 
likelihood/accuracy/whatever-score. In practices, 
this is of course not possible  (Fridman, 2000).  

The methods used for learning the structure of 
BNs can be divided into two main groups;  

 Discovery of independence relationships 
using statistical test, e.g.  PC and GS 
algorithm, 

  Exploration and evaluation which use a 
score to evaluate the ability of the graph 
to recreate conditional independence 
within the model, e.g., K2 

K2 algorithm is the basic method working with a 
node ordering as an input.  It starts by assuming that 
a node lacks parents, after which in every step it 
adds incrementally that parent whose addition most 
increases the probability of the resulting structure 
(Cooper, 1992).  K2 stops adding parents to the 
nodes when the addition of a single parent cannot 
increase the probability. The K2 algorithm receives 
as input a total node ordering which can have a big 
influence on its result. Thus, finding a good ordering 
of the variables is also crucial for the algorithm 
success.  In other words, The K2 algorithm reduces 
this computational complexity by requiring a prior 
ordering of nodes as an input, from which the 
network structure will be constructed. The ordering 
is such that if node Xi comes prior to node Xj in the 
ordering, then node Xj cannot be a parent of node Xi. 
In other words, the potential parent set of node Xi 
can include only those nodes that precede it in the 
input ordering. The K2 algorithm is included below: 
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Procedure K2 
1.{Input: A set of n nodes, an ordering on the nodes, 

an upper bound u on the number of parents a node may 
have, and a database D containing m cases} 

2.{Output: for each node, a printout of parents of the 
node} 

3. for i: =1 to n  do 
4.    πi:=Ø; 
5.     Pold=f(i, πi) 
6.    OKToproceed:=true; 
7.    While  OKToproceed and | πi |<u do 

      8.        Let ݖ be the node in Pred(xi)- πi  that maximize 
f(i, πi⋃{ݖ}); 

9.                    Pnew= f(i, πi⋃{ݖ}); 

10.                  If Pnew> Pold  then 
11.              Pold= Pnew; 

12.              πi= π୧  {ݖ}⋃

13.   else OKToproceed:= false; 
14.    end{while}; 
15. end{for} 
16. end{K2} 

where  

݂(݅, π୧) = ෑ ݎ) − 1)!൫ ܰ + ݎ − 1൯!ୀଵ ෑ ܰ
ୀଵ  

Pred (xi): is a set that is computed for every node 
during the algorithm and it includes the nodes that 
precede a node xi in the ordering.  
πi : set of parents of node xi  
qi = |φi |, φi : list of all possible instantiations of the 
parents of xi in database D.  
 ri = |Vi |, Vi : list of all possible values of the 
attribute xi  N: Number of cases (i.e. instances) in D in 
which the attribute xi is instantiated with its k-th 
value, and the parents of xi in πi are instantiated with 
the j-th instantiation in φi ; Nij = ∑ N୰୧ୀଵ  That is, 
the number of instances in the database in which the 
parents of xi in πi are instantiated with the j-th 
instantiation in φi.  

Our methodology for learning BN via 
communality concept is as follows:  

 Because we conduct  factor analysis on the 
correlation matrix (standardized variables), 
we need to use the proper correlation 
between variables, i.e., the correlation 
between ordinal variables referred as 
Spearman correlation  

 Once the extraction of factors has been 
completed (here using parallel analysis), we 
use the communalities (the proportion of 
each variable's variance) and determine the 
node ordering.   

 Finally K2 algorithm is used to construct a 
BN.  

4 EXPERIMENT  

In this section we present the empirical results.  For 
this purpose, we use two well-known network 
structures; ALARM  (Beinlich et al., 1998) and 
Hailfinder  (Abramson, 1996).    We sample four 
datasets from ALARM and Hailfinder BNs in order 
to perform multiple tests and estimate more precise 
metrics. Therefore we sample 1000, 5000, 10000 
and 20000 cases for learning BN structures and  
repeat this procedure 10 times.  

We consider the proportion of the variance of 
each variable which is accounted for by the common 
factors (communality) as the input for K2 algorithm.  
We also consider other node ordering methods such 
as K2+T, K2-T, Hruschka et al. method (2007) and 
Chen et al., method (2008) as input for K2 
algorithm.  We finally compare the results.  

The existence of the known network structures 
allows us to define important terms, which indicate 
the performance of the method. For this purpose, the 
True Positive (TP), False Positive (FP), True 
Negative (TN) and False Negative (FN) values are 
computed. In addition, known measure such as, 
Positive Predictive Value (PPV), True Positive Rate 
(TPR) and F-score measure (F-measure) are 
considered (Powers, 2011). The F-measure score is 
defined as follows:     ܨ − ݁ݎݑݏܽ݁݉ = 2 ܸܲܲ. ܴܸܶܲܲܲ + ܴܶܲ , 

F-measure is useful quantity used to compare 
learned and actual networks. Comparing this 
measure between different methods indicates which 
method is more efficient in the task of learning BNs. 
The algorithm with larger values for F-measure is 
more efficient in learning the skeleton of the 
network.  

4.1 ALARM Network 

The ALARM network has 37 variables; each one 
has two, three or four possible attributes.  ALARM 
network shown in Figure 1.   

 
Figure 1: ALARM Network. 
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The 37 nodes in ALARM network  can be 
viewed as ordinal variables; 27 variables have 
natural ordering and 10 variables are binary data 
which can be viewed as a special case of ordinal 
data with only two categories (for instance not 
having  hypovolemia is better than  having one). 
Therefore the Spearman correlation between 
variables for performing FA is considered.   

The right number of factors is determined by 
parallel analysis.  Figure 2 shows the number of 
eigenvalues of the data that are greater than 
simulated values. In other words, Parallel analysis 
suggests that the numbers of factors are 11, 12, 12 
and 12 for sample sizes 1000, 5000, 10000 and 
20000 respectively.  

 
Figure 2: Factor Numbers Using parallel analysis; Alarm 
network. 

As mentioned before, we sapmle 1000, 5000, 
10000 and 20000 cases and repeat this procedure 10 
times and report the  mean of TPs, FPs, F-measures  
and the standard deviation (std) of F-measures.  
According to the Tables 1- 4, our proposed method 
for determination of node ordering as input for K2 
algorithm  receives higher value of F-measure.  

Table 1: Comparing different methods (Sample size: 1000, 
network=Alarm). 

Method TP FP F std 

PROPOSED  22.12 44.37 0.39 0.011 

K2 + MWST 16.25 44.38 0.3 0.031 

K2-MWST 22.75 58.87 0.35 0.012 

Chen et al. 20.62 58.62 0.32 0.023 

Hruschka et al 20.87 61.50 0.32 0.019 

Table 2: Comparing different methods (Sample size: 5000, 
network =Alarm). 

Method TP FP F std 

PROPOSED  22.25 44.5 0.39 0.010 

K2 + MWST 15.62 45.62 0.29 0.011 

K2-MWST 22.25 57.12 0.35 0.022 

Chen et al. 20.75 51.75 0.35 0.013 

Hruschka et al 21.12 56.87 0.34 0.012 

Table 3: Comparing different methods (Sample size: 
10000, network =Alarm). 

Method TP FP F std 

PROPOSED  21.37 42.75 0.40 0.023 

K2 + MWST 18.87 37.25 0.36 0.013 

K2-MWST 18.25 46.50 0.33 0.012 

Chen et al. 22.50 53.62 0.36 0.018 

Hruschka et al 22.37 53.12 0.36 0.016 

Table 4: Comparing different methods (Sample size: 
20000, network =Alarm). 

Method TP FP F  std 

PROPOSED  22.37 36.12 0.41  0.020 

K2 + MWST 16.50 45.50 0.30  0.021 

K2-MWST 23.12 57.25 0.36  0.016 

Chen et al. 23.12 52.37 0.38  0.014 

Hruschka et 
al 

22.87 49.50 0.38 
 

0.014 

4.2 Hailfinder Network 

Hailfinder is a BN designed to forecast severe 
summer hail in northeastern Colorado. The number 
of nodes and arcs are 56 and 66 respectively (Figure 
3). The 56 nodes in Hailfinder network can be 
viewed as ordinal variables; therefore the Spearman 
correlation between variables can be considered for 
performing FA.  

Figure 4 shows the number of eigenvalues of the 
data that are greater than simulated values. Parallel 
analysis suggests that the numbers of factors are 13, 
18, 19 and 21 for sample sizes 1000, 5000, 10000 
and 20000 respectively. 
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Figure 3: Hailfinder Network. 

 
Figure 4: Factor Numbers Using parallel analysis; 
Hailfinder. 

We also sample  1000, 5000, 10000 and 20000 
cases form Hailfinder  and repeat this procedure 10 
times and report the  mean of TPs, FPs, F-measures 
and the standard deviation  of F-measures. 

As shown in Tables 5-8, if we deal with a large 
data set, our proposed method for determining the 
node ordering among variables has higher accuracy 
as input for K2 algorithm. 

Table 5: Comparing different methods (Sample size: 1000, 
network =Hailfinder). 

Method TP FP F std 

PROPOSED  29.37 72 0.35 0.013 

K2 + MWST 20.5 64.5 0.27 0.012 

K2-MWST 19.12 67.5 0.25 0.009 

Chen et al. 20.87 60.62 0.28 0.011 

Hruschka et al 26.37 81.12 0.3 0.010 

Table 6: Comparing different methods Sample size: 5000, 
network =Hailfinder). 

Method TP FP F std 

PROPOSED  28.12 63.25 0.35 0.015 

K2 + MWST 21.87 61.62 0.29 0.012 

K2-MWST 20.75 63.25 0.27 0.009 

Chen et al. 22.87 61.62 0.30 0.012 

Hruschka et al 25.12 73.25 0.30 0.014 

Table 7: Comparing different methods (Sample size: 
10000, network =Hailfinder). 

Method TP FP F std 

PROPOSED  31.12 62.12 0.39 0.013 

K2 + MWST 22.00 61.87 0.29 0.015 

K2-MWST 21.87 61.87 0.29 0.011 

Chen et al. 26.25 58.75 0.34 0.011 

Hruschka et al 25.75 62.37 0.33 0.017 

Table 8: Comparing different methods (Sample size: 
20000, network =Hailfinder). 

Method TP FP F std 

PROPOSED  33.12 58.5 0.42 0.017 

K2 + MWST 27.75 61.75 0.35 0.019 

K2-MWST 22.62 61.75 0.3 0.016 

Chen et al. 22.75 61.87 0.3 0.010 

Hruschka et al 31.00 65.87 0.38 0.013 

5 COMPARISON OF CONSUMED 
TIME AND COMPLEXITY 

Yielding more effective node ordering is an 
important issue for the K2 algorithm. However, the 
most effective heuristic algorithm is the one 
proposed by Chen et al. (2008) whose time is O(n4).  
We introduce a very simple node ordering method as 
input of K2 algorithm that the time complexity was 
thereby reduced to O(n2). We also compare the time 
consumption by the node ordering methods. In this 
comparison, less time reflects better performance. 
The results are presented in Table 9. It shows that 
our method has the better performance.  So we can 
conclude that the proposed ordering method is much 
accurate and simple compared with other ordering 
space exploring approaches. 
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Table 9: Time consumed (s) during node ordering 
(including the K2 algorithm). 

Method Alarm Hailfinder 
PROPOSED 8.98 s 31.35 s 
K2 + MWST 11.28 s 33.62 s 
K2-MWST 12.36 s 34.70 s 
Chen et al. 75.19 s 300.94 s 

Hrushka et al. 236.22 984.95 s 

6 CONCLUSIONS  

The BN-learning problem is NP-hard, so many 
approaches have been proposed for this task is quite 
complex and hard to implement. In this paper, we 
propose a very simple and easy-to-implement 
method for addressing this task. Our method is based 
on the single order yielded by factor analysis. It does 
not explore the space of the orderings. So, it is much 
easier than ordering-based approaches which do 
explore the ordering space.  Because factor analysis 
is based on the correlation matrix of the variables 
involved.  
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