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Abstract: Many distributed systems can be regarded as multi-agent systems (MASs) where some agents are connected 
to a network but located in different places. We consider severe situations where many causes of future agent 
failures in MASs are found simultaneously and consecutively owing to large-scale disasters. If a cause of 
future agent failure is not removed within a limited time, there is a high possibility that one of the agents will 
stop working. In order to find effective strategies that reduce the number of actual agent failures, we compare 
some repair-task-allocation strategies for MASs where sensing agents find causes of future agent failures and 
manager agents communicate with one another to allocate repair tasks to action-execution agents. 

1 INTRODUCTION 

In many multi-agent systems (MASs), even if an 
agent stops working, most of the other agents 
continue to work and cover the task of the disabled 
agent unless some important agents break down. 
Normally, relatively few causes of future agent 
failures are found simultaneously and it is not 
difficult to remove them before some agents actually 
fail. However, in the event of large-scale disasters, 
many causes of future agent failures are found 
simultaneously and consecutively, in which case, the 
whole MAS will stop functioning if they are not fixed 
efficiently using limited resources. Therefore, it is 
important to effectively allocate the resources 
necessary to repair them. 

In this paper, we consider some scenarios where 
disaster events repeatedly occur, which create causes 
of future agent failures simultaneously and 
consecutively. In such scenarios, we compare some 
repair-task-allocation algorithms for MASs to find a 
way of reducing the number of damaged agents so 
that the MAS continues to function as a whole. 
Although some fundamental repair-task-allocation 
algorithms are compared in (Beaumont and Chaib-
draa 2007), the maximum number of causes of future 
agent failures in their test scenarios is 10. On the other 
hand, in our disaster scenarios, we consider much 
more severe situations where the maximum number 
is of the order of hundreds. As discussed in Section 6, 
this difference leads to completely different 

conclusions. Although cooperation between agents 
was ineffective for reducing the number of failures in 
the test scenarios of (Beaumont and Chaib-draa 2007), 
we predict that cooperation is vital for allocation of 
limited resources within a limited time when many 
causes of future agent failures are created 
simultaneously and consecutively owing to large-
scale disasters. 

As discussed in (Choi, Brunet, and How 2009; 
Macarthur et al. 2011; Rahimzadeh, Khanli, and 
Mahan 2015), task-distribution algorithms are 
roughly divided into two kinds of algorithms: 
centralized algorithms and distributed algorithms. In 
centralized algorithms, a single manager agent 
collects information from its child agents and 
allocates tasks to them. On the other hand, in 
distributed algorithms, multiple manager agents 
communicate with one another to allocate the tasks to 
their child agents. Many existing task-allocation 
algorithms are centralized algorithms. However, 
distributed task-allocation algorithms are attracting 
attention because they are expected to be fault-
tolerant: the breakdown of one manager agent does 
not mean the total failure of the MAS. One of our 
aims is to compare these two kinds of algorithms in 
the repair-task-allocation scenarios. Because 
execution of a repair action sometimes fails, it is 
natural to replan and reallocate the repair task. We 
also evaluate centralized and distributed repair-task-
allocation algorithms that include replanning 
capabilities. 
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There is more related work on task allocation. In 
(Rahimzadeh, Khanli, and Mahan 2015), the 
probabilities of future agent failures are considered 
when allocating tasks to agents. However, the 
algorithm does not consider repairing. In (Guessoum 
et al. 2010), some backup agents are created in case 
of emergency. However, as pointed out in 
(Rahimzadeh, Khanli, and Mahan 2015), the cost of 
backup agents is high when additional hardware is 
needed and it takes time to copy the agents 
dynamically. The algorithm does not consider 
repairing either. In (Okimoto et al. 2015), considering 
future agents’ failure, robust agent teams are created. 
The idea is to prepare more agents than needed. Again, 
the cost is high and repairing is not considered. 
Coallition formation of first responders in disaster 
relief is also researched in (Ramchurn et al. 2010). 

Applications of multi-agent task allocation range 
from disaster relief (Chapman et al. 2009; dos Santos 
and Bazzan 2011; Nair et al. 2002; Pujol-Gonzalez 
2015; Ramchurn et al. 2010; Ramchurn et al. 2016; 
Suárez, Quintero, de la Rosa, 2007), computer games 
(Dawe 2013; Straatman et al. 2013), and coordination 
of robots (Mi et al. 2014; Vallejo et al. 2009) to 
command and control for combat ships (Beaumont 
and Chaib-draa 2004; Beaumont and Chaib-draa 
2007; Brown and Lane 2000; Brown et al. 2001; 
Young 2005). Our repair-task-allocation is closely 
related to the task allocation problems of combat 
ships and disaster relief where tasks with hard 
deadlines such as threat removal and civilian rescue 
are allocated to teams. 

This paper is organized as follows. In Section 2, 
we define the MAS architecture for repair-task 
allocations. In Section 3, we define five algorithms 
for task repairing. In Section 4, we explain the 
detailed settings for simulation. In Section 5, we show 
the simulation results. In Section 6, we discuss the 
simulation results, comparing them with the 
simulation results reported in (Beaumont and Chaib-
draa 2007). Section 7 is devoted to the conclusion. 

2 MAS ARCHITECTURE FOR 
REPAIR-TASK ALLOCATIONS 

We consider a MAS for repair-task allocations that is 
composed of multiple unit MASs including sensing 
agents, action-execution agents, and a manager agent: 
sensing agents detect causes of future agent failures, 
action-execution agents fix causes of future agent 
failures using limited resources, and manager agents 
communicate with one another to allocate repair tasks 

to action-execution agents. In this section, we define 
unit MASs and the agents that belong to unit MASs. 
We define the functions of unit MASs as agents 
because each function is often deployed on different 
hardware and becomes out of order independently. 

As shown in Figure 1, a unit MAS is a MAS 
comprising 0 or more sensing agents, 0 or more 
action-execution agents, and 1 manager agent. 
When a sensing agent senses a cause of a future agent 
failure, it reports the information to the manager agent 
in the same unit MAS. When receiving the 
information of a cause of a future agent failure, the 
manager agent allocates the repair task to an action-
execution agent that belongs to the same unit MAS or 
allocates the repair task to the manager agent of 
another unit MAS if there are multiple unit MASs and 
their manager agents are connected by the network.  

When allocated a repair task, the action-execution 
agent will execute a repair action consuming one 
resource. Execution of a repair action will succeed or 
fail according to the predefined probability. Unless a 
cause of a future agent failure is removed by a repair 
action, one of the agents will stop functioning 
according to the predefined probability. 

When a unit MAS has sensing agents and action-
execution agents, the unit MAS can sense and remove 
causes of future agent failures without the help of the 
other unit MASs as shown in Figure 1. In this case, 
each unit MAS is independent and it is unnecessary 
to connect each unit MAS through the network. 
Because of its simplicity, the repair-task-allocation 
algorithm for independent unit MASs will be 
compared with other algorithms as a baseline 
algorithm. 

 

Figure 1: A unit MAS. 

As shown in Figure 2, when the manager agents 
of unit MASs are connected by the network, sensing 
and repairing can be done in different unit MASs. We 
expect that repair-task allocations will be more 
effective when the manager agents are connected.  

When the MAS has a centralized architecture, as 
shown in Figure 3, only one manager agent (top 
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manager agent) works as a leader and allocates all 
the repair tasks to unit MASs. On the other hand, 
when the MAS has a distributed architecture as 
shown in Figure 2, different manager agents become 
leaders of task allocation for different repair tasks. 
We expect that the distributed MAS algorithm is 
more robust than the centralized algorithm because in 
the distributed architecture, even if a leader becomes 
out of order, another manager agent becomes a leader. 
We will compare the repair-task-allocation 
algorithms that use these MAS architectures. 

 
Figure 2: Distributed architecture. 

 
Figure 3: Centralized architecture. 

3 ALGORITHMS 

In this section, we introduce five algorithms for 
repair-task allocations: the independent unit MAS 
algorithm (baseline algorithm), the centralized 
algorithm, the distributed algorithm, the centralized 
algorithm with replanning, and the distributed 
algorithm with replanning. In order to make these 
algorithms for repair-task-allocations, we use well-
known techniques. 

In the independent unit MAS algorithm, the 
manager agent of each unit MAS decides which 
repair action to execute without exchanging 
information with other unit MASs. In the centralized 
algorithm, only one manager agent (top manager 
agent) works as a leader and allocates repair tasks to 
unit MASs. In the distributed algorithm, when a 

sensing agent detects a cause of a future agent failure, 
the manager agent in the same unit MAS works as a 
leader and selects a unit MAS for the repair-task. 
Note that different manager agents become leaders 
for different repair tasks in the distributed algorithm. 
In the centralized algorithm with replanning, only the 
top manager agent reallocates unsuccessful repair 
tasks to unit MASs. On the other hand, in the 
distributed algorithm with replanning, when an 
action-execution agent fails to execute a repair action, 
the manager agent in the same unit MAS works as a 
leader and reallocates the unsuccessful repair task to 
a unit MAS.  

We expect that the centralized algorithm and the 
distributed algorithm can allocate repair tasks more 
effectively than the independent unit MAS algorithm 
because unit MASs communicate with one another. 
We also expect that the distributed algorithm is more 
robust than the centralized algorithm that is weak 
with respect to the failure of the top manager agent. 
We also evaluate the centralized algorithm with 
replanning and the distributed algorithm with 
replanning because it is natural and effective to 
reallocate the repair task when the repair task is not 
completed successfully. 

3.1 Independent Unit MAS Algorithm 

In the independent unit MAS algorithm, the manager 
agents of different unit MASs do not communicate 
with one another. Therefore, as in Figure 1, when a 
sensing agent senses a cause of a future agent failure, 
the action-execution agent in the same unit MAS tries 
to repair it without the help of the other unit MASs. 
Although this algorithm does not require network 
connections among unit MASs, multiple action-
execution agents in different unit MASs might try to 
execute repair actions for the same cause of a future 
agent failure, which leads to unnecessary 
consumption of resources. 
 
Algorithm 1 (Independent Unit MAS Algorithm) 
The sensing agents, the manager agent and the 
action-execution agents in each unit MAS work as 
follows if they are alive: 
 Algorithm of Sensing Agents 
1. When a sensing agent detects a new cause of a 

future agent failure, it reports the information to 
the manager agent in the same unit MAS if the 
manager agent is alive. 

 Algorithm of Manager Agents 
1. When the manager agent M receives the 

information of a new cause of a future agent 
failure C from a sensing agent in the same unit 
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MAS, the manager agent M selects and reserves 
an action-execution agent E for the repair task 
R of C, if E exists, such that E is alive, the 
number of resources of E is more than 0 and E 
is not reserved for another cause of a future 
agent failure.  

2. When it becomes possible for the reserved 
action-execution agent E to start executing the 
repair action A for the reserved repair task R, if 
E is alive, the manager agent M in the same unit 
MAS orders E to execute A and erases the 
reservation information. 

 Algorithm of Action-Execution Agents 
1. When receiving an execution order of the repair 

action A, the action-execution agent E executes 
A, decrements 1 resource whether the result of 
A is a success or a failure, and reports the result 
to its manager agent.  

3.2 Centralized Algorithm 

A centralized algorithm is often used for task 
allocations in general. In the centralized algorithm, as 
shown in Figure 3, only one manager agent (top 
manager agent) allocates repair tasks to the manager 
agents of unit MASs based on the contract net 
protocol (Smith 1980), which is a kind of auction. 
Although there are many criteria to select a unit MAS, 
we select the unit MAS that can start repairing first. 
Because of the network connection, we expect that 
the centralized algorithm is more effective than the 
independent unit MAS algorithm. 
 
Algorithm 2 (Centralized Algorithm) The sensing 
agents, the manager agent and the action-execution 
agents in each unit MAS work as follows if they are 
alive: 
 
 Algorithm of Sensing Agents 

Same as the algorithm of sensing agents in 
Algorithm 1. 

 Algorithm of Manager Agents 
1. When the manager agent M receives the 

information of a new cause of a future agent 
failure C from a sensing agent in the same unit 
MAS, the manager agent M forwards the 
information of C to the top manager agent T if T 
is alive. Otherwise, it works in the same way as 
the first step of the algorithm of manager agents 
in Algorithm 1. 

2. When the manager agent M receives an 
allocation of a repair task R from the top 
manager agent, M selects and reserves an 
action-execution agent E for R in the same way 

as the first step of the algorithm of manager 
agents in Algorithm 1. 

3. Same as the second step of the algorithm of 
manager agents in Algorithm 1. 

 Algorithm of the Top Manager Agent 
1. When the top manager agent T receives the 

information of a new cause of a future agent 
failure C from a manager agent, T asks each 
alive manager agent M whether the unit MAS U 
of M can be in charge of the repair task R of C 
and how quickly an action-execution agent of U 
can start the repair action of R. Then, T 
allocates R to the manager agent of the unit 
MAS U2 such that an action-execution agent of 
U2 can start the repair action of R the quickest.  

 Algorithm of Action-Execution Agents 
Same as the algorithm of action-execution 
agents in Algorithm 1. 

3.3 Distributed Algorithm 

In the distributed algorithm, as shown in Figure 2, 
when a sensing agent detects a cause of a future agent 
failure, the manager agent in the same unit MAS 
works as a leader like the top manager agent of the 
centralized algorithm, selects a unit MAS based on 
the contract net protocol (Smith 1980), and allocates 
the repair-task to the manager agent of the selected 
unit MAS. However, unlike the centralized algorithm, 
different manager agents become leaders for different 
repair tasks. Therefore, the distributed algorithm is 
expected to be more robust for agent failures than the 
centralized algorithm. 
 
Algorithm 3 (Distributed Algorithm) The sensing 
agents, the manager agent and the action-execution 
agents in each unit MAS work as follows if they are 
alive: 
 
 Algorithm of Sensing Agents 

Same as the algorithm of sensing agents in 
Algorithm 1. 

 Algorithm of Manager Agents 
1. When the manager agent M receives the 

information of a new cause of a future agent 
failure C from a sensing agent in the same unit 
MAS, M asks each alive manager agent, selects 
a unit MAS U and allocates the repair task of C 
to the manager agent of the unit MAS U in the 
same way as the first step of the algorithm of the 
top manager agent in Algorithm 2. 

2. When the manager agent M receives an 
allocation of a repair task R from the manager 
agent of another unit MAS, M selects and 
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reserves an action-execution agent E for R in the 
same way as the first step of the algorithm of 
manager agents in Algorithm 1. 

3. Same as the second step of the algorithm of 
manager agents in Algorithm 1. 

 Algorithm of Action-Execution Agents 
Same as the algorithm of action-execution agents 
in Algorithm 1. 

3.4 Centralized Algorithm with 
Replanning 

In the centralized algorithm with replanning, when 
execution of a repair action results in failure, the top 
manager agent reselects a unit MAS and reallocates 
the repair task to the manager agent of the selected 
unit MAS. Because the success rate of repair actions 
is not 100%, it is expected that replanning will 
decrease the number of agent failures. 
 
Algorithm 4 (Centralized Algorithm with 
Replanning) The sensing agents, the manager agent 
and the action-execution agents in each unit MAS 
work as follows if they are alive: 
 Algorithm of Sensing Agents 

Same as the algorithm of sensing agents in 
Algorithm 1. 

 Algorithm of Manager Agents 
1. Same as the first step of the algorithm of 

manager agents in Algorithm 2. 
2. Same as the second step of the algorithm of 

manager agents in Algorithm 2. 
3. Same as the third step of the algorithm of 

manager agents in Algorithm 2. 
4. When the manager agent M receives the result of 

repair-action execution for the repair task R 
from an action-execution agent in the same unit 
MAS, if the result is a failure, M reports the 
result of R as a failure to the top manager agent. 

 Algorithm of the Top Manager Agent 
1. Same way as the first step of the algorithm of the 

top manager agent in Algorithm 2. 
2. When the top manager agent T receives the result 

of a failure for the repair task R from a manager 
agent, T asks each alive manager agent, selects 
a unit MAS U, and reallocates R to one of the 
manager agents in the same way as the first step 
of the algorithm of the top manager agent in 
Algorithm 2. 

 Algorithm of Action-Execution Agents 
Same as the algorithm of action-execution 
agents in Algorithm 1. 

3.5 Distributed Algorithm with 
Replanning 

In the distributed algorithm with replanning, when an 
action-execution agent fails to execute a repair action, 
the manager agent in the same unit MAS reselects a 
unit MAS and reallocates the task to the manager 
agent of the selected unit MAS. It is expected that 
replanning will decrease the number of agent failures. 
 
Algorithm 5 (Distributed Algorithm with 
Replanning) The sensing agents, the manager agent 
and the action-execution agents in each unit MAS 
work as follows if they are alive: 
 Algorithm of Sensing Agents 

Same as the algorithm of sensing agents in 
Algorithm 1. 

 Algorithm of Manager Agents 
1. Same as the first step of the algorithm of 

manager agents in Algorithm 3. 
2. Same as the second step of the algorithm of 

manager agents in Algorithm 3. 
3. Same as the third step of the algorithm of 

manager agents in Algorithm 3. 
4. When the manager agent M receives the 

result of repair-action execution for the 
repair task R from an action-execution 
agent in the same unit MAS, if the result is a 
failure, this manager agent M reallocates R 
to one of the manager agents in the same 
way as the first step of the algorithm of 
manager agents in Algorithm 3. 

 Algorithm of Action-Execution Agents 
Same as the algorithm of action-execution 
agents in Algorithm 1. 

4 SIMULATION SETTINGS 

In this section, we explain the details of simulation 
settings used to compare and evaluate the algorithms 
defined in the previous section. We set typical values 
of unit MASs, considering our target application that 
is closely related to the application of (Beaumont and 
Chaib-draa 2007). In 4.1, we show the number of 
agents and resources in unit MASs. In 4.2, we show 
the performances of sensing and repairing of each 
unit MAS. In 4.3, we show the consecutive 
occurrence patterns of disaster events that create 
multiple causes of future agent failures 
simultaneously. As stressed in the introductory 
section, we predict that cooperation among agents 
becomes very effective in these severe occurrence 
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patterns of disaster events, which is completely 
different from the result of (Beaumont and Chaib-
draa 2007) where the numbers of causes of future 
agent failures in their test scenarios are small. 

4.1 Numbers of Agents and Resources 
in Unit MASs 

As shown in Table 1, we use 7 kinds of unit MASs: 
UMAS 0, …, UMAS 6, which are typical unit MASs 
of our target application. The numbers of UMAS 0, 
…, UMAS 6 are 1, 1, 2, 2, 4, 8, 8. The total number 
of these unit MASs is 26 (=1+1+2+2+4+8+8). Each 
UMAS has exactly one manager agent and the total 
number of manager agents is 26. Each UMAS has 
exactly one sensing agent except UMAS 0 and the 
total number of sensing agents is 25.  

Table 1: The number of unit MASs, agents, and resources. 
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UMAS 0 1 1 0 0 - 
UMAS 1 1 1 1 0 - 
UMAS 2 2 1 1 0 - 
UMAS 3 2 1 1 4 18 
UMAS 4 4 1 1 2 12 
UMAS 5 8 1 1 1 24 
UMAS 6 8 1 1 1 3 

Because high-performance unit MASs are costly 
in general, considering the balance, we use a smaller 
number of high-performance unit MASs and a larger 
number of low-performance unit MASs. We introdu-
ce the performance of each unit MAS in the next 
subsection. Although we conducted simulations for 
different numbers of these unit MASs, we observed 
similar simulation results and we do not show them 
in this paper. Note that the aim of this paper is to find 
when each algorithm is more effective than others. 
Simulation under different combinations of unit 
MASs was not helpful for this purpose. 

The numbers of action-execution agents in 
UMAS 0, …, UMAS 6 are 0, 0, 0, 4, 2, 1, 1. The total 
number of action-execution agents is 32 
(=2*4+4*2+8*1+8*1). An action-execution agent 
cannot execute more than one repair action in parallel 
but multiple action-execution agents can execute 

repair actions at the same time. The numbers of initial 
resources that each action-execution agent in UMAS 
3, …, UMAS 6 has are 18, 12, 24, 3. The total number 
of initial resources is 456 
(=2*4*18+4*2*12+8*1*24+8*1*3).  

UMAS 1 and UMAS 2 do not have action-
execution agents, which means that the causes of 
agent failures found by the sensing agent of UMAS 1 
or UMAS 2 need to be repaired by the action 
execution agents of UMAS 3, …, UMAS 6. UMAS 0 
does not have sensing agents or action-execution 
agents. It has only one manager agent that works as 
the top manager agent when using the centralized 
algorithm or the centralized algorithm with 
replanning. 

4.2 Performance of Sensing and 
Repairing 

Table 2 shows performances of unit MASs in terms 
of sensing and repairing. We set the typical 
performances of each unit MAS considering a 
specific application. Sensing agents in UMAS 1, …, 
UMAS 6 can start detecting causes of agent failure 
respectively from 360, 180, 72, 43.2, 18, 18 seconds 
before the expected time of agent’s breakdown. The 
sooner the sensing agent detects a cause of a future 
agent failure, the higher the performance is, which 
means that performance of the sensing agent in 
UMAS 1 is the best. The probability of detecting 
causes of future agent failures is 90%.  

Action-execution agents in UMAS 3, …, UMAS 
6 can start repairing from 36, 18, 10.8, 10.8 seconds 
before the expected time of an agent failure. The 
sooner the action-execution agent can start repairing, 
the higher the performance is, which means that 
performance of the action-execution agent in UMAS 
3 is the best. The success probability of repairing is 
80%. When an action-execution agent starts repairing 
x seconds before the expected time of agent’s 
breakdown, the time of repairing will be x/2.5 
seconds. We assume a situation where a cause of 
agent failure approaches the target agent at constant 
speed and the action-execution agent sends the 
resource for a repair to the cause of future agent 
failure at constant speed. 

Table 2: The performance of sensing and repairing. 
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UMAS 1 360 90 - - - 
UMAS 2 180 90 - - - 
UMAS 3 72 90 36 x/2.5 80 
UMAS 4 43.2 90 18 x/2.5 80 
UMAS 5 18 90 10.8 x/2.5 80 
UMAS 6 18 90 10.8 x/2.5 80 

4.3 Occurrence Patterns of Disasters  

Table 3 summarizes the occurrence patterns of 
disaster events and causes of future agent failures. In 
our simulation scenarios, when a disaster event 
occurs, a cause of a future agent failure is created 
every second. The total number of causes of future 
agent failures created by a disaster event is 30. 
Disaster events repeatedly happen 10 times, and the 
interval between disaster events is 1 hour. Note that 
the number of action-execution agents is 32, which is 
also the maximum number of the repair actions that 
can be executed in parallel. This number is closer to 
the number of causes of future agent failures created 
by a disaster event. Therefore, the repairing capability 
of the MAS is close to the limitation.  

As summarized in Table 4, we use two different 
selection rules of agents: the random selection rule of 
agents and the concentrated selection rule of agents. 
When the random selection rule of agents is applied, 
if a cause of a future agent failure is not removed by 
a repair action, one of the agents is randomly selected. 
The selected agent becomes out of order with the 
probability of 90% in 1800 seconds. When the 
concentrated selection rule of agents is applied, the 
top manager agent (the manager agent of UMAS 0) is 
selected with the probability of 10% and one of the 
other agents is randomly selected if the top agent is 
not selected. We expect that the concentrated 
selection rule affects the centralized algorithm. 

Table 3: Simulation settings. 
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Table 4: Selection rules of agents. 

Random Selection 
Rule of Agents 

Concentrated Selection Rule 
of Agents 

One agent is 
randomly selected. 

The top manager agent is 
selected with the prob. of 10% 
and one agent is randomly 
selected otherwise.  

5 SIMULATION RESULTS 

This section shows the simulation results. We 
conducted simulations 1000 times using different 
random seeds for each algorithm and for each 
selection rule of agents. We show the results in terms 
of the number of agent failures and successful repairs. 
This section is composed of two subsections. In 5.1, 
we show the simulation results when using the 
random selection rule of agents. In 5.2, we show the 
simulation results when using the concentrated 
selection rule of agents. 

5.1 When using the Random Selection 
Rule of Agents 

This subsection shows the simulation results when 
using the random selection rule of agents. Figure 4 
shows the average number of agent failures and 
Figure 5 shows the average number of successful 
repairs. Reducing agent failures is the top priority but 
it depends on successful repairs. 

The centralized algorithm and the distributed 
algorithm are much better than the independent unit 
MAS algorithm because each cause of future agent 
failure is allocated to a unit MAS in the centralized 
algorithm and the distributed algorithm, which is not 
the case with the independent unit MAS algorithm. 
These two algorithms become much better when 
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combined with a replanning capability because 
replanning covers unsuccessful repair actions. 

The distributed algorithm with/without 
replanning is better than the centralized algorithm 
with/without replanning. However, the difference is 
slight. We expect that the difference would become 
bigger after the top manager agent becomes out of 
order. Therefore, in the next subsection, we focus on 
use of the concentrated selection rule of agents to 
increase the possibility of a failure of the top manager 
agent.  

 

Figure 4: Average number of agent failures when using the 
random selection rule of agents. 

 

Figure 5: Average number of successful repairs when using 
the random selection rule of agents. 

Figure 6 shows the probabilities of each algorithm 
getting the best results in terms of the numbers of 
agent failures. The sum of the probabilities is more 
than 100 % because multiple algorithms can get the 
best result in a trial. Unlike Figure 4, Figure 6 clearly 
indicates that the distributed algorithm with 
replanning is the best choice and the centralized 
algorithm with replanning is the second best choice. 

 

Figure 6: Probability of getting the best result in terms of 
the number of agent failures when using the random 
selection rule of agents. 

5.2 When using the Concentrated 
Selection Rule of Agents 

This subsection shows the simulation result when 
using the concentrated selection rule of agents. Figure 
7 shows the average number of agent failures and 
Figure 8 shows the average number of successful 
repairs.  

Now, the differences between the centralized 
algorithm with/without replanning and the distributed 
algorithm with/without replanning are clear. The 
distributed algorithm without replanning becomes 
better than the centralized algorithm without 
replanning from the second disaster event. The 
distributed algorithm with replanning becomes better 
than the centralized algorithm with replanning from 
the fifth disaster event. This is because the centralized 
algorithms work in the same way as the independent 
unit MAS algorithm after the failure of the top 
manager agent. 

 

Figure 7: Average number of agent failures when using the 
concentrated selection rule of agents. 
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Figure 9 shows the probabilities of getting the best 
results in terms of the numbers of agent failures. 
Figure 9 clearly indicates that the distributed 
algorithm with replanning is the best choice. 

 

Figure 8: Average number of successful repairs when using 
the concentrated selection rule of agents. 

 

Figure 9: Probability of getting the best result in terms of 
the number of agent failures when using the concentrated 
selection rule of agents. 

6 DISCUSSION 

As mentioned in the introduction, some repair-task-
allocation algorithms are compared in (Beaumont and 
Chaib-draa 2007), including a no-coordination 
algorithm (≒ independent unit MAS algorithm), a 
zone defence coordination algorithm, a contract net 
algorithm, a simple centralized coordination 
algorithm, and another central coordination algorithm 
of (Brown and Lane 2001). In their simulation results, 
the no-coordination algorithm gives the best result in 
terms of the number of hits (≒successful repairs). 
Note that the independent unit MAS algorithm (≒no-

coordination algorithm) always produces the worst 
results in our simulation results. 

This is mainly because the total number of threats 
(≒causes of future agent failures) is small (1 to 10) 
in the scenario of (Beaumont and Chaib-draa 2007). 
This is also because each ship (≒unit MAS) tries to 
remove all the threats using many resources in the no-
coordination algorithm whereas each threat is 
assigned to only one ship in the other algorithms and 
replanning is not an option even when it fails to 
remove the threat.  

On the other hand, in our simulation scenario, 10 
disaster events repeatedly happen, each disaster event 
creates 30 causes of future action failures, and the 
total number of causes of future agent failures is 300. 
In this case, the unit MASs cannot remove all the 
causes of future agent failures without coordination.  

Also, in the independent unit MAS algorithm that 
uses many resources, unit MASs soon run out of 
resources at early stages and cannot continue 
repairing afterwards. Therefore, in our much severer 
disaster scenario, the independent unit MAS 
algorithm is the worst choice and coordination among 
unit MASs is vital. This is completely different from 
the simulation result of (Beaumont and Chaib-draa 
2007) where they never run out of resources.  

In addition, we found that replanning is very 
effective in this severe situation. Furthermore, we 
confirmed that in our simulation scenario, the 
distiributed algorithm is better than the centralized 
algorithm and especially so when the concentrated 
selection rule is applied. 

Because different scenarios might lead to 
different conclusions, it is important to conduct 
simulations considering our target applications in 
more detail. It is also important to evaluate more 
algorithms considering other situations such as 
network delay. We need to tackle these challenges as 
the next step. 

7 CONCLUSIONS 

In this paper, we evaluated and compared five 
algorithms for repair-task allocations in MASs that 
consist of multiple unit MASs by means of multi-
agent simulation: the independent unit MAS 
algorithm, the centralized algorithm, the distributed 
algorithm, the centralized algorithm with replanning, 
and the distributed algorithm with replanning. We 
used severe simulation scenarios where causes of 
future agent failures are created simultaneously and 
consecutively. We conducted simulation 1000 times 
for each case and algorithm and confirmed the 
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following in terms of the average number of agent 
failures and successful repairs: 
 The centralized algorithm and the distributed 

algorithm are always better than the 
independent unit MAS algorithm in our 
simulation scenarios, which means that 
cooperation between unit MASs is very 
effective. This conclusion is completely 
different from the simulation results reported 
in (Beaumont and Chaib-draa 2007). This is 
because much more severe disasters are 
considered in our simulation scenarios 
where causes of future agent failures are 
created simultaneously and consecutively. 

 The centralized algorithm and the distributed 
algorithm become even better when 
combined with replanning, which means that 
replanning is very effective in our simulation 
scenarios where repair actions sometimes 
fail. 

 The distributed algorithm with/without 
replanning is better than the centralized 
algorithm with/without replanning when the 
random selection rule is applied although the 
difference is slight. However, the distributed 
algorithm with/without replanning becomes 
much better than the centralized algorithm 
with/without replanning when the 
concentrated selection rule is applied. This 
means that the distributed algorithm is 
effective for unbalanced occurrences of 
future agent failures and the centralized 
algorithm is not robust when the top 
manager agent is vulnerable. 
 In summary, the distributed algorithm 
with replanning is always the best and the 
independent unit MAS algorithm is always 
the worst in our severe simulation scenarios 
where hundreds of causes of future agent 
failures are created. 

We also evaluated the algorithms from the view 
point of “the probabilities of getting the best results 
in terms of the numbers of agent failures” and 
confirmed the following: 
 The distributed algorithm with replanning is 

clearly the best choice in any case in our 
simulation scenarios. 

 The centralized algorithm with replanning is 
clearly the second best choice when the 
random selection rule of agents is applied. 

In future work, we intend to consider the 
following two directions: 
 We intend to evaluate the algorithms in more 

detail in our target application. For this 

purpose, we need to combine the MAS 
controller of our algorithms and the domain-
specific simulator of our target application. 

 We intend to evaluate more algorithms 
considering other situations. For example, 
sometimes the network speed between 
manager agents of different unit MASs 
might slow or the network might be cut off. 
In another example, the human manager of 
the unit MAS might correct the allocation of 
repair actions that the manager agent 
recommends. 
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