Search-and-Fetch with 2 Robots on a Disk - Wireless and Face-to-Face Communication Models

Konstantinos Georgiou, George Karakostas, Evangelos Kranakis

Abstract

We introduce and study treasure-evacuation with 2 robots, a new problem on distributed searching and fetching related to well studied problems in searching, rendezvous and exploration. The problem is motivated by real-life search-and-rescue operations in areas of a disaster, where unmanned vehicles (robots) search for a victim (treasure) and subsequently bring (fetch) her to safety (the exit). One of the critical components in such operations is the communication protocol between the robots. We provide search algorithms and contrast two standard models, the face-to-face and the wireless model. Our main technical contribution pertains to the face-to-face model. More specifically, we demonstrate how robots can take advantage of some minimal information of the topology (i.e., the disk) in order to allow for information exchange without meeting. The result is a highly efficient distributed treasure-evacuation protocol which is minimally affected by the lack of distant communication.

References

  1. Ahlswede, R. and Wegener, I. (1987). Search problems. Wiley-Interscience.
  2. Albers, S. and Henzinger, M. R. (2000). Exploring unknown environments. SIAM Journal on Computing, 29(4):1164-1188.
  3. Albers, S., Kursawe, K., and Schuierer, S. (2002). Exploring unknown environments with obstacles. Algorithmica, 32(1):123-143.
  4. Alpern, S. (2011). Find-and-fetch search on a tree. Operations Research, 59(5):1258-1268.
  5. Alpern, S. and Gal, S. (2003). The theory of search games and rendezvous. Springer.
  6. Baeza Yates, R., Culberson, J., and Rawlins, G. (1993). Searching in the plane. Information and Computation, 106(2):234-252.
  7. Baeza-Yates, R. and Schott, R. (1995). Parallel searching in the plane. Computational Geometry, 5(3):143-154.
  8. Beck, A. (1964). On the linear search problem. Israel Journal of Mathematics, 2(4):221-228.
  9. Bellman, R. (1963). An optimal search. SIAM Review, 5(3):274-274.
  10. Berman, P. (1998). On-line searching and navigation. In Fiat, A. and Woeginger, G. J., editors, Online Algorithms: The State of the Art, pages 232-241. Springer.
  11. Bonato, A. and Nowakowski, R. (2011). The game of cops and robbers on graphs. AMS.
  12. Burgard, W., Moors, M., Stachniss, C., and Schneider, F. E. (2005). Coordinated multi-robot exploration. Robotics, IEEE Transactions on, 21(3):376-386.
  13. Chrobak, M., Gasieniec, L., T., G., and Martin, R. (2015). Group search on the line. In SOFSEM 2015. Springer.
  14. Chung, T. H., Hollinger, G. A., and Isler, V. (2011). Search and pursuit-evasion in mobile robotics. Autonomous Robots, 31(4):299-316.
  15. Czyzowicz, J., Gasieniec, L., Gorry, T., Kranakis, E., Martin, R., and Pajak, D. (2014). Evacuating robots from an unknown exit located on the perimeter of a disc. In DISC 2014, pages 122-136. Springer, Austin, Texas.
  16. Czyzowicz, J., Georgiou, K., Dobrev, S., Kranakis, E., and MacQuarrie, F. (2016). Evacuating two robots from multiple unknown exits in a circle. In ICDCN 2016.
  17. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., and Vogtenhuber, B. (2015a). Evacuating robots from a disc using face to face communication. In CIAC 2015, pages 140-152. Springer, Paris, France.
  18. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., and Shende, S. (2015b). Wireless autonomous robot evacuation from equilateral triangles and squares. In ADHOC-NOW 2015, Athens, Greece, June 29 - July 1, 2015, Proceedings, pages 181-194.
  19. Demaine, E. D., Fekete, S. P., and Gal, S. (2006). Online searching with turn cost. Theoretical Computer Science, 361(2):342-355.
  20. Deng, X., Kameda, T., and Papadimitriou, C. (1991). How to learn an unknown environment. In FOCS, pages 298-303. IEEE.
  21. Fekete, S., Gray, C., and Kröller, A. (2010). Evacuation of rectilinear polygons. In Combinatorial Optimization and Applications, pages 21-30. Springer.
  22. Georgiou, K., Karakostas, G., and Kranakis, E. (2016a). Search-and-fetch with 2 robots on a disk: Wireless and face-to-face communication models. CoRR, abs/1611.10208.
  23. Georgiou, K., Karakostas, G., and Kranakis, E. (2016b). Search-and-fetch with one robot on a disk. In 12th International Symposium on Algorithms and Experiments for Wireless Sensor Networks.
  24. Gluss, B. (1961). An alternative solution to the lost at sea problem. Naval Research Logistics Quarterly, 8(1):117-122.
  25. Hipke, C., Icking, C., Klein, R., and Langetepe, E. (1999). How to find a point on a line within a fixed distance. Discrete Appl. Math., 93(1):67-73.
  26. Hoffmann, F., Icking, C., Klein, R., and Kriegel, K. (2001). The polygon exploration problem. SIAM Journal on Computing, 31(2):577-600.
  27. Isbell, J. R. (1967). Pursuit around a hole. Naval Research Logistics Quarterly, 14(4):569-571.
  28. Jennings, J. S., Whelan, G., and Evans, W. F. (1997). Cooperative search and rescue with a team of mobile robots. In ICAR, pages 193-200. IEEE.
  29. Kao, M.-Y., Ma, Y., Sipser, M., and Yin, Y. (1998). Optimal constructions of hybrid algorithms. J. Algorithms, 29(1):142-164.
  30. Kao, M.-Y., Reif, J. H., and Tate, S. R. (1996). Searching in an unknown environment: An optimal randomized algorithm for the cow-path problem. Information and Computation, 131(1):63-79.
  31. Kleinberg, J. (1994). On-line search in a simple polygon. In SODA, page 8. SIAM.
  32. Koutsoupias, E., Papadimitriou, C., and Yannakakis, M. (1996). Searching a fixed graph. In ICALP 96, pages 280-289. Springer.
  33. Nahin, P. (2012). Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton University Press.
  34. Papadimitriou, C. H. and Yannakakis, M. (1989). Shortest paths without a map. In ICALP, pages 610-620. Springer.
  35. Stone, L. (1975). Theory of optimal search. Academic Press New York.
  36. Thrun, S. (2001). A probabilistic on-line mapping algorithm for teams of mobile robots. The International Journal of Robotics Research, 20(5):335-363.
  37. Yamauchi, B. (1998). Frontier-based exploration using multiple robots. In Proceedings of the second international conference on Autonomous agents, pages 47- 53. ACM.
  38. Lemma A. a) There exists some a0 ? (0, p) such that 3a/2 - p - sin (a/2) + 2 sin (a) is positive for all a ? (a0, p) and negative for all a ? [0, a0). In particular, a0 ˜ 1.22353.
Download


Paper Citation


in Harvard Style

Georgiou K., Karakostas G. and Kranakis E. (2017). Search-and-Fetch with 2 Robots on a Disk - Wireless and Face-to-Face Communication Models . In Proceedings of the 6th International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-758-218-9, pages 15-26. DOI: 10.5220/0006091600150026


in Bibtex Style

@conference{icores17,
author={Konstantinos Georgiou and George Karakostas and Evangelos Kranakis},
title={Search-and-Fetch with 2 Robots on a Disk - Wireless and Face-to-Face Communication Models},
booktitle={Proceedings of the 6th International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2017},
pages={15-26},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006091600150026},
isbn={978-989-758-218-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - Search-and-Fetch with 2 Robots on a Disk - Wireless and Face-to-Face Communication Models
SN - 978-989-758-218-9
AU - Georgiou K.
AU - Karakostas G.
AU - Kranakis E.
PY - 2017
SP - 15
EP - 26
DO - 10.5220/0006091600150026