Reduction of Optical Rotation and Scattering in a Cholesteric Liquid Crystal Layer

Mitsunori Saito, Junki Fujiwara

Abstract

Cholesteric liquid crystal usually exhibits an optical rotation owing to its chirality. In the infrared region, however, the optical rotation power disappears, since the light wavelength is too long to recognize the refractive-index change of the nanometer-sized chiral structure. Consequently, the cholesteric liquid crystal exhibits a polarization-independent refractive index in the long-wavelength infrared range. The effective refractive index takes a value between the ordinary and extraordinary indices regardless of the polarization direction. The refractive index decreases to the ordinary index, when a phase transition takes place by application of an electric voltage (the electro-optical effect). This polarizer-free device operation, however, used to be limited to the wavelength range beyond 4 μm, since the optical rotation remained in the short wavelength range. In addition, a heavy scattering occurred during the phase transition process. In this study, experiments were conducted to examine how the chiral pitch and the thickness of the liquid crystal layer affected these optical characteristics. When a liquid crystal with a chiral pitch of 5 μm was enclosed in a cell with a 3 μm gap, both the rotation power and scattering loss were reduced successfully in a wide spectral range extending to 2 μm wavelength.

References

  1. Khoo, I. C., 2007. Liquid Crystals, Wiley. New York, 2nd edition.
  2. Saito, M., Yasuda, T., 2010. An infrared polarization switch consisting of silicon and liquid crystal. J. Opt. 12(1). p. 015504-1-6.
  3. Patel, J. S., Maeda, M. W., 1991. Tunable polarization diversity liquid-crystal wavelength filter. IEEE Photon. Technol. Lett. 3(8). p. 739-740.
  4. Hirabayashi, K., Tsuda, H., Kurokawa, T., 1993. Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems. J. Lightwave Technol. 11(12). p. 2033-2043.
  5. Saito, M., Hayashi, K., 2013. Integration of liquid crystal elements for creating an infrared Lyot filter. Opt. Express, 21(10). p. 11984-11993.
  6. Moore, J., Collings, N., Crossland, W. A., Davey, A. B., Evans, M., Jeziorska, A. M., Komarcevic, M., Parker, R. J., Wilkinson, T. D., Xu, H., 2008. The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM. IEEE Photon. Technol. Lett. 20(1). p. 60-62.
  7. Lin, Y.-H., Ren, H., Wu, Y.-H., Zhao, Y., Fang, Ge, J. Z., Wu, S.-T., 2005. Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure. Opt. Express, 13(22). p. 8746-8752.
  8. Ye, M., Wang, B., Sato, S., 2006. Polarization-independent liquid crystal lens with four liquid crystal layers. IEEE Photon. Technol. Lett. 18(3). p. 505-507.
  9. Lee, J.-H., Kim, H.-R., Lee, S.-D., 1999 Polarizationinsensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter. Appl. Phys. Lett. 75(6). p. 859-861.
  10. Provenzano, C., Pagliusi, P., Cipparrone, G., 2006. Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces. Appl. Phys. Lett. 89(12). p. 121105-1-3.
  11. Saito, M., Yoshimura, K., Kanatani, K., 2011. Siliconbased liquid-crystal cell for self-branching of optical packets. Opt. Lett. 36(2). p. 208-210.
  12. Patel, J. S., Lee, S.-D., 1991. Electrically tunable and polarization insensitive Fabry-Perot étalon with a liquid-crystal film. Appl. Phys. Lett. 58(22). p. 2491- 2493.
  13. Crooker, P. P., 2001. Blue Phases. Kitzerow, H., Bahr, C., eds., Chirality in Liquid Crystals. Springer, New York.
  14. Haseba, K., Kikuchi, H., Nagamura, T., Kajiyama, T., 2005, Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range. Adv. Mater. 17. p. 2311-2315.
  15. Lin, Y.-H., Chen, H.-S., Lin, H.-C., Tsou, Y. S., Hsu, H.- K., Li, W.-Y., 2010. Polarization-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals. Appl. Phys. Lett. 96(11). p. 113505-1-3.
  16. Hsiao, Y.-C., Tan, C.-Y., Lee, W., 2011. Fast-switching bistable cholesteric intensity modulator. Opt. Express, 19(10). p. 9744-9749.
  17. Kopp, V. I., Fan, B., Vithana, H. K. M., Genack, A. Z., 1998. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt. Lett. 23(21). p. 1707-1709.
  18. Furumi, S., Yokoyama, S., Otomo, A., Mashiko, S., 2003. Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals. Appl. Phys. Lett. 82(1). p. 16-18.
  19. Saito, M., Maruyama, A., Fujiwara, J., 2015. Polarizationindependent refractive-index change of a cholesteric liquid crystal. Opt. Mater. Express, 5(7). p. 1588-1597.
  20. Kim, K.-H., Jin, H.-J., Park, K.-H., Lee, J.-H., Kim, J. C., Yoon, T.-H., 2010. Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection. Opt. Express, 18(16). p. 16745-16750.
  21. Born, M., Wolf, E., 1980. Principles of Optics, Pergamon. Oxford. Chapter 2.
  22. Saito, M., Takeda, R., Yoshimura, K., Okamoto, R., Yamada, I., 2007. Self-controlled signal branch by the use of a nonlinear liquid crystal cell. Appl. Phys. Lett. 91(14), p. 141110-1-3.
  23. Hecht, E., 1998. Optics. Addison-Wesley. Reading, MA. Chapter 9.
  24. Saito, M. Yasuda, T., 2003. Complex refractive-index spectrum of liquid crystal in the infrared. Appl. Opt. 42(13). p. 2366-2371.
Download


Paper Citation


in Harvard Style

Saito M. and Fujiwara J. (2017). Reduction of Optical Rotation and Scattering in a Cholesteric Liquid Crystal Layer . In Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-758-223-3, pages 22-31. DOI: 10.5220/0006089700220031


in Bibtex Style

@conference{photoptics17,
author={Mitsunori Saito and Junki Fujiwara},
title={Reduction of Optical Rotation and Scattering in a Cholesteric Liquid Crystal Layer},
booktitle={Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},
year={2017},
pages={22-31},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006089700220031},
isbn={978-989-758-223-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - Reduction of Optical Rotation and Scattering in a Cholesteric Liquid Crystal Layer
SN - 978-989-758-223-3
AU - Saito M.
AU - Fujiwara J.
PY - 2017
SP - 22
EP - 31
DO - 10.5220/0006089700220031