Fluorescence Enhancement of Europium Ions in a Scattering Matrix

Mitsunori Saito, Takahiro Koketsu

Abstract

Microlasers are usually composed of organic dyes that emit fluorescence with a high efficiency. Those dyes, however, lose their fluorescence function in a short time because of optically- or thermally-induced bleaching. This degradation is particularly serious with microdevices, since a high-powered beam is focused into a small volume of the device. The problem of the device degradation can be solved, if organic dyes are replaced by fluorescent lanthanide ions (europium, erbium, neodymium, etc.) that have a superior durability against optical and thermal hazards. The lanthanide ions, however, have a smaller absorption cross-section than organic dyes, and hence, a pump light for exciting the ions is absorbed insufficiently inside a microdevice. A long optical path is therefore required to enhance the excitation efficiency. Polyethylene glycol is a useful solvent for dispersing europium ions, since it turns to a translucent matrix by solidification. In this translucent matrix, pump light (396 nm wavelength) is scattered heavily, which leads to extension of the optical path and enhancement of the absorbance. Consequently, fluorescence of the europium ions (613 nm) becomes twofold stronger in the solid phase than the liquid phase.

References

  1. Hawkins, A. R., Schmidt, H., eds., 2010. Handbook of Microfluidics. CRC Press, Boca Raton, Florida.
  2. Tzeng, H.-M., Wall, K. F., Long, M. B., Chang, R. K., 1984. Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances. Opt. Lett. 9(11). p. 499-501.
  3. Saito, M., Shimatani, H., Naruhashi, H., 2008. Tunable whispering gallery mode emission from a microdroplet in elastomer. Opt. Express, 16(16). p. 11915-11919.
  4. Gersborg-Hansen, M., Balslev, S., Mortensen, N. A., Kristensen, A., 2007. Bleaching and diffusion dynamics in optofluidic dye lasers. Appl. Phys. Lett. 90(14). p. 143501-1-3.
  5. Kytina, I. G., Kytin, V. G., Lips, K., 2004. High power polymer dye laser with improved stability. Appl. Phys. Lett. 84(24). p. 4902-4904.
  6. Yoshioka, H., Yang, Y., Watanabe, H., Oki, Y., 2012. Fundamental characteristics of degradationrecoverable solid-state DFB polymer laser. Opt. Express, 20(4). p. 4690-4696.
  7. Barnes, M. D., Ng, K. C., Whitten, W. B., Ramsey, J. M., 1993. Detection of single rhodamine 6G molecules in levitated microdroplets. Anal. Chem. 65(17). p. 2360- 2365.
  8. Shionoya, S., Yen, W. M., eds., 1999. Phosphor Handbook. CRC Press, Boca Raton, Florida.
  9. Garret, C. G. B., Kaiser, W., Bond, W. L., 1961. Stimulated emission into optical whispering modes of spheres. Phys. Rev. 124(6). p. 1807-1809.
  10. Miura, K., Tanaka, K., Hirao, K., 1996. Laser oscillation of a Nd3+-doped fluoride glass microsphere. J. Mater. Sci. Lett. 15. p. 1854-1857.
  11. Klitzing, W., Jahier, E., Long, R., Lissillour, F., LefèvreSeguin, V., Hare, J., Raimond, J.-M., Haroche, S., 2000. Very low threshold green lasing in microspheres by up-conversion of IR photons. J. Opt. B: Quantum Semiclass. Opt. 2. p. 204-206.
  12. Lin, H.-B., Eversole, J. D., Merritt, C. D., Campillo, A. J., 1992. Cavity-modified spontaneous-emission rates in liquid microdroplets. Phys. Rev. A, 45(9). p. 6756- 6760.
  13. Tagaya, A., Kobayashi, T., Nakatsuka, S., Nihei, E., Sasaki, K., Koike, Y., 1997. High gain and high power organic dye-doped polymer optical fiber amplifiers: absorption and emission cross sections and gain characteristics. Jpn. J. Appl. Phys. 36(5A). p. 2705- 2708.
  14. Watanabe, H., Oki, Y., Maeda, M., Omatsu, T., 2005. Waveguide dye laser including a SiO2 nanoparticledispersed random scattering active layer. Appl. Phys. Lett. 86(15). p. 151123-1-3.
  15. Wiersma, D. S., Albada, M. P., Lagendijk, A., Lawandy, N. M., Balachandran, R. M., 1995. Random Laser? Nature, 373. p. 203-204.
  16. Saito, M., Nishimura, Y., 2012. Bistable optical transmission properties of polyethylene-glycol. Proc. SPIE, 8474. p. 847411-1-12.
  17. Saito, M., Nishimura, Y., 2016. Bistable random laser that uses a phase transition of polyethylene glycol. Appl. Phys. Lett. 108(13). p. 131107-1-4.
  18. Wong, K. S., Sun, T., Liu, X.-L., Pei, J., Huang, W., 2002. Optical properties and time-resolved photoluminescence of conjugated polymers with europium complex side chain and an emitter. Thin Solid Films, 417. p. 85-89.
Download


Paper Citation


in Harvard Style

Saito M. and Koketsu T. (2017). Fluorescence Enhancement of Europium Ions in a Scattering Matrix . In Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-758-223-3, pages 15-21. DOI: 10.5220/0006089600150021


in Bibtex Style

@conference{photoptics17,
author={Mitsunori Saito and Takahiro Koketsu},
title={Fluorescence Enhancement of Europium Ions in a Scattering Matrix},
booktitle={Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},
year={2017},
pages={15-21},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006089600150021},
isbn={978-989-758-223-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - Fluorescence Enhancement of Europium Ions in a Scattering Matrix
SN - 978-989-758-223-3
AU - Saito M.
AU - Koketsu T.
PY - 2017
SP - 15
EP - 21
DO - 10.5220/0006089600150021