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Abstract: We present RIProtection (Rest In Protection), a novel Linux kernel-based approach that mitigates the tamper-
ing of return instruction pointers. RIProtection uses single stepping on branches for instruction-level monitor-
ing to guarantee the integrity of the ret-based control-flow of user-mode programs. Our modular design of
RIProtection allows an easy adoption of several security approaches relying on instruction-level monitoring.
For this paper, we implemented two exclusive approaches to protect RIPs: XOR-based encryption as well as
a shadow stack. Both approaches provide reliable protection of RIPs, while the shadow stack additionally
prevents return-oriented programming and withstands information leakages of the user-mode stack. While
the performance of RIProtection is a severe drawback, its compatibility with regard to hardware and software
requirements is outstanding because it supports virtually all 64-bit programs without recompilation or binary
rewriting.

1 INTRODUCTION

Numerous exploit techniques for memory-safety vul-
nerabilities are known and have been widely applied
for years. Exploiting these mistakes was easy from
the beginning but many of the approaches available
today limit or even prevent the damage. The most
widely applied safeguards in use at present are Ad-
dress Space Layout Randomization (ASLR), which
randomizes the base address of segments, the No eX-
ecute (NX) bit, which marks a page as either ex-
ecutable or not, and stack canaries, which place a
unique random value in front of the RIP. All three
countermeasures significantly increase the effort an
attacker needs to undertake, especially if ASLR, NX
and canaries are combined.

When it comes to creating exploits that subvert a
great number of countermeasures, however, return-
oriented programming (ROP) (Shacham, 2007) has
become the method of choice. ROP can circumvent
NX because it uses chained addresses (so-called gad-
gets) of segments that do not have the NX bit set. All
these gadgets eventually execute a ret. ASLR can
be subverted by the prior exploitation of an informa-
tion leakage vulnerability (Sotirov and Dowd, 2008).
If the latter is the case, canaries can be trivially dis-
abled, too (Bulba and Kil3r, 2000). Especially ROP
distorts the original intent of a ret because it does

not read an address that was previously written by its
corresponding call.

1.1 Contributions

Our work yields the following contributions:

(a) We propose RIProtection, a novel kernel-based
protection mechanism that uses single steps on
branches to synchronously monitor any branch in-
struction. RIProtection currently only monitors
call and ret instructions but is able to monitor
any branch. Our approach is developed to run
on commodity hardware and facilitates the branch
trap flag and the last branch record of the Intel x86
CPU. Both features have been available for years
now and, therefore, allow high compatibility.

(b) Different types of security models are supported
on a per-process basis. This work presents two
approaches: One relying on the XOR encryption
of return addresses, the other using a shadow stack
to provide enhanced security.

(c) Our security evaluation shows that RIProtection
can safely prevent RIP tampering as well as ROP
and information leakage attacks in the shadow
stack operation mode. Furthermore, our empiric
evaluation of the shadow stack security module
proves that all ret-based attacks are prevented
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Figure 1: The Landscape of Related Work: Each circle represents the technical approach that a defense mechanism uses.
While the compiler, binary rewriting and instrumentation are rather precise and self-explanatory, the kernel- and hardware-
aided category is more generalized and sums up techniques that try to facilitate hardware features. Additionally, the circles
are subdivided to illustrate the concept that an approach is using. They might aim to assert control-flow integrity, concentrate
to eliminate gadgets, focus on protecting the RIP or use multiple concepts.

and an effective gain in security is achieved. Ad-
ditionally, we evaluated performance and com-
patibility. While run-time performance is a big
issue, RIProtection has high compatibility with
any x86_64 legacy binary without requiring any
side information, source code, binary rewriting or
user-level binary instrumentation.

1.2 Outline

The outline of this paper is as follows. Section 2
covers related work on exploit mitigation that uses
compile-time approaches, binary rewriting, binary in-
strumentation or a kernel-based approach. Section 3
describes the design and implementation of RIProtec-
tion. Section 4 is dedicated to the evaluation of RIPro-
tection in terms of security, performance and compat-
ibility. Finally, Section 5 provides a conclusion and
possibilities for future work.

2 LANDSCAPE OF RELATED
WORK

All defense techniques presented in this section can
be categorized to some extent to use compiler-based
solutions, binary rewriting, instrumentation or a hard-

ware-aided kernel-level approach as a technical strat-
egy. In addition to these techniques, they have a con-
cept that may enforce control-flow integrity, has the
goal of making ROP gadgets unavailable to an at-
tacker or focuses on mitigation of the RIP. In con-
trast to all related work, RIProtection operates only in
kernel-mode without modification of hardware or user
mode software. 1 illustrates the landscape of the dif-
ferent technical approaches described in the following
sections.

2.1 Compile-time Approaches

This section is dedicated to compiler-level extensions
that aim to improve the security of programs by stat-
ically adding security logic to the source code. Many
works use this approach as it is rather convenient to
add checks for improved security. However, a natural
feature of all these approaches is that they need the
source code to be available.

StackGuard (Cowan et al., 1998) is a patch
for the GCC compiler that is available using the
-fstack-protector option. It inserts a random
cookie (also called canary) in front of the RIP that
is checked during a function’s epilogue. StackGuard
is a potent mitigation technique that significantly in-
creases the effort that an attacker needs to take and
introduces only a slight performance overhead. Espe-
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cially the fact that only one secret is used for the en-
tire process, however, renders canaries vulnerable to
information leakage attacks (Bulba and Kil3r, 2000).

Pointguard (Cowan et al., 2003) is yet another
patch for the GCC that encrypts any pointers and de-
crypts them only if they are about to get loaded into a
CPU register. It uses XORencryption with a key that
is acquired at program start using /dev/urandom. In
general, Pointguard can provide security not only for
the RIP but for every pointer in the program. Yet, it
uses only one secret for the entire process and, conse-
quently, becomes especially vulnerable against infor-
mation leakage attacks.

An approach that wants to eliminate useful gad-
gets is G-Free (Onarlioglu et al., 2010). To achieve
this, two techniques are used. First, any unintended
code sequences are transformed that could be read as
ret or jmp. To prevent the usage of these instructions
created by the compiler, G-Free additionally enforces
control-flow integrity by ensuring that a function is
called only from its entry point. The fact that G-Free
first removes unaligned gadgets and later adds code
that is required for its approach may introduce new
gadgets (Cheng et al., 2014). Furthermore, the pol-
icy to only allow functions to be called from their en-
try point cannot always prevent ROP attacks (Göktaş
et al., 2014).

Another compiler extension that uses control-flow
integrity in conjunction with the elimination of unin-
tended gadgets is CFLocking (Bletsch et al., 2011).
First, non-intended gadgets are eliminated. To ac-
count for the name of the tool, a lock that is immedi-
ately unlocked when the control flow is transferred to
a legal target in the control-flow graph is introduced.
If a branch occurs, the lock is checked again and if it
is still locked, the program is terminated. In general,
CFLocking suffers from similar drawbacks as G-Free.

2.2 Binary Rewriting

The technique of binary rewriting aims to modify an
existing program without recompilation.

A gadget-oriented tool that does not aim to re-
move useful gadgets but uses a randomization ap-
proach to make gadgets unavailable is ILR (Hiser
et al., 2012). In contrast to ASLR, which random-
izes only the base of a segment, ILR randomizes
the address of every instruction. This cannot be
achieved with x86 native code, which is why ILR uses
a process-level virtual machine (PVM). The princi-
ple of operation consists of an offline and a run-time
phase. In the offline phase, ILR analyzes the binary
and creates a randomized binary and a fall-through
map for the PVM to guide execution in the run-time

phase. Even though ILR can randomize up to 99.7%
of the instructions in a binary, research has proven that
even very small programs can provide enough gad-
gets for a successful exploit (Schwartz et al., 2011).
Furthermore, shared libraries are not affected by ILR.
They are solely protected by ASLR and, thus, provide
a potential attack surface.

Another instruction randomization approach is
STIR (Wartell et al., 2012). Similar to ILR – but with-
out the need of a virtual machine – it does not rely on
any side information and, therefore, requires only the
binary. However, STIR randomizes only the binary
at a basic block granularity and uses x86 native code
to dynamically determine the address of each basic
block. The level of randomization is relatively high
but a leaked basic block can again provide enough
gadgets to break this defense (Schwartz et al., 2011).

The x86 architecture is generally an attractive tar-
get for code-reuse attacks (Roemer et al., 2010). Its
instruction encoding is of variable length and must
not be unaligned, which allows interpreting data as
instructions. IPR (Pappas et al., 2012) is a sophis-
ticated solution for IA-32 that aims to eliminate un-
intended gadgets. In general, IPR uses three binary
rewrite techniques that do not change the semantics
of the program but provide equivalent substitution of
some binary patterns.

CCFIR (Zhang et al., 2013) aims to combine a
gadget-oriented approach with control-flow integrity
mechanisms. On the control-flow side, CCFIR re-
stricts indirect call and jump instructions such that
they may only transfer the control flow to the function
entry point or are entirely prohibited (e.g. sensitive
API calls may only be accessed using a direct call).
To achieve this, CCFIR disassembles the binary and
creates an entry for each indirect branch in a so-called
springboard. As this approach uses control-flow in-
tegrity, ROP can be successfully prevented. How-
ever, an attacker might still jump to valid targets in
the control-flow graph.

2.3 Binary Instrumentation

The approach of binary instrumentation is similar to
binary rewriting. However, instrumentation does not
only rewrite existing code but also adds additional
checks – several instructions are, therefore, instru-
mented. In contrast to RIProtection, all these ap-
proaches instrument the binary in user-mode rather
than in kernel-mode.

DROP (Chen et al., 2009) employs instrumenta-
tion to realize a gadget-oriented technique. Their de-
fense tool relies on two parameters: the size of each
potential gadget (G_size) and the length of contiguous
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gadget sequences (S_length). If a specific threshold
for G_size and max(S_length) is reached, it is identi-
fied as malicious ROP code. According to its DROP
does not yield false positive or false negatives. Recent
work, however, has shown that approaches which rely
on gadget size and length cannot reliably protect pro-
grams and, thus, are still vulnerable (Göktaş et al.,
2014).

Another instrumentation-based approach that
tries to enforce control-flow integrity is ROPDe-
fender (Davi et al., 2011). It uses the dynamic binary
instrumentation framework Pin (Luk et al., 2005) to
instrument any binary without having access to any
side information. ROPDefender ensures that every
ret reads only the RIP placed by its corresponding
call, and utilizes a shadow stack to achieve this. The
implementation is rather compact as the Pin frame-
work provides most of the features that ROPDefender
requires. In contrast to RIProtection, ROPDefender
uses only a shadow stack of return addresses and does
not save the value of the stack pointer. In our opinion,
this could lead to malfunctioning, e.g. in some cases
of exception handling, if the same return address ex-
ists more than once in the (shadow) stack.

ROPGuard (Fratrić, 2012) is another state-of-the-
art defense technique that is part of the Enhanced Mit-
igation Experience Toolkit (EMET) (Defense, 2012).
It tries to enforce a coarse-grained control-flow pol-
icy by using binary instrumentation to hook several
critical Windows API functions on IA-32. When one
of these functions is executed, ROPGuard performs
two checks. At first it probes whether the RIP of the
API function call is call-preceded. ROPGuard per-
forms this call-preceded check not only on the RIP
but also emulates a few steps in the control flow to
catch a future non-call-preceded return. The second
check is committed to the stack. ROPGuard detects
attempts to modify stack pointers in such a way that
they point into the heap or another attacker-controlled
memory region. Additionally, the stack may not be
set to executable. Nevertheless, also ROPGuard can
be bypassed as shown in the literature (Davi et al.,
2014).

The kBouncer (Pappas et al., 2013) approach not
only relies on binary instrumentation but also uses
the last branch record (LBR) of modern processors.
As a top-level concept, it enforces a coarse-grained
control-flow integrity policy that hooks all Windows
API calls. The remarkable difference to ROPGuard
is that it not only checks if the procedure is call-
preceded but also probes previously adopted branches
with the facilities that the LBR offers. Like other ap-
proaches that utilize coarse-grained control-flow in-
tegrity, kBouncer can also be bypassed (Carlini and

Wagner, 2014). The basic steps to exploit a program
if kBouncer is in use are the following: 1) place the
ROP payload as usual but do not invoke the syscall
yet, 2) flush history, 3) restore the state of registers
that might have changed due to the history flushing,
and 4) execute the syscall.

2.4 Kernel- and Hardware-based
Approaches

This section describes approaches which have in com-
mon that they all attempt to use hardware features
and/or are implemented in kernel mode.

Address Space Layout Randomization (ASLR) is a
standard mitigation technique that every modern op-
erating system has integrated today. The OS maps
program sections during the load-time of a process.
Most notably, the sections for the stack and heap are
randomized and, therefore, an attacker cannot over-
write the RIP with an address that points into any seg-
ment that is covered by ASLR. Besides being vulner-
able to brute-force attacks (Shacham et al., 2004), it
is constantly being bypassed using information leak-
age attacks (Sotirov and Dowd, 2008) and, as a result,
has the same attack surface as canaries. This is a ma-
jor issue, because even though ASLR and canaries are
widely used nowadays, they can be disabled using the
same vulnerability.

The No eXecute (NX) bit is a page entry bit that
marks an entire page as either executable or not. To-
gether with ASLR, it is one of the default defense
techniques (van der Veen et al., 2012). When an
instruction is scheduled for execution, the memory
management unit (MMU) probes the page that the
address belongs to and if the NX bit is set, the pro-
cessor yields an exception causing the process to be
terminated. With NX enabled, it is no longer pos-
sible to execute payload injected via a buffer over-
run, because the stack is not marked as executable.
The method of choice to circumvent NX these days
is ROP (Shacham, 2007). This technique does not
call functions but only a short sequence of instruc-
tions preceding a ret. As a consequence, the program
counter is always loaded with an address of an exe-
cutable section. Thus, the NX bit cannot prevent the
execution of malicious code because the PC is only
loaded with addresses from executable segments.

CFIMon (Xia et al., 2012) uses hardware perfor-
mance counters and the Linux kernel subsystem perf
events to detect control-flow violations. Therefore,
they use the branch trace store (BTS) of recent pro-
cessors. When BTS is used, all taken branches are
recorded in memory. The protection that CFIMon of-
fers is to run whenever the protected application calls
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execve(2). At this point, CFIMon reads the BTS and
each branch is qualified as legal, illegal or suspicious.
In contrast to the LBR, using the BTS has a notable
performance impact as branches are traced to memory
rather than to specific registers. Furthermore, the as-
sumption that every exploit ultimately leads to a call
to execve(2) a weakness because malicious code can
obviously deal damage without issuing an execve(2)
system call.

ROPecker (Cheng et al., 2014) is a state-of-the-art
ROP prevention tool that performs various checks to
enforce some sort of coarse-grained control-flow in-
tegrity. ROPecker is triggered on some “risky system
calls” like mmap(2) and, additionally, if code is ex-
ecuted that resides on another page as the previous
page. Whenever ROPecker is triggered during the
run-time phase, it first consults the database created
in the offline phase and the LBR to check whether
the address points to a gadget. If a specific gadget
chain threshold is exceeded, ROPecker terminates the
process. To fill the gap until the next critical sys-
tem call or page fault, ROPecker also implements fu-
ture instruction emulation. Even though the authors
admit that their approach could especially struggle
with short gadget chains, they do not acknowledge
this as a realistic threat. However, it has been proven
that ROPecker can indeed be defeated using history
flushing and gadget lengths below the threshold in
a similar fashion as the exploitation of kBouncer re-
quires (Göktaş et al., 2014).

3 DESIGN AND
IMPLEMENTATION

In this section, we present RIProtection, a novel ap-
proach that does not require recompilation, binary
rewriting or any other side information such as de-
bug symbols. First, we describe the general idea be-
hind RIProtection and, subsequently, present our de-
sign decisions for instruction-level monitoring along
with some implementation details of our approach.
Finally, the technical implementation is outlined and
a typical RIProtection life cycle is shown.

3.1 Basic Idea and Concept

The high-level concept of RIProtection is rather
generic. As illustrated in Figure 2, it consists of
two parts. One part is responsible for instruction-
level monitoring (ILM). ILM determines the kind of
branch and invokes the second part, one of the under-
lying security modules SecMod1 to SecModn. The
selected security module SecModi then is aware of

Protected
Process Branch ILM

SecMod1

...

SecModn

RIProtection

Figure 2: The concept of RIProtection consists of a compo-
nent that is used for instruction-level monitoring (ILM) and
of several possible security modules (SecModx).

which branch was executed and can enforce a pol-
icy of choice. RIProtection allows different security
mechanisms on a per-process basis. Even though, for
our work, only call and ret instruction are of inter-
est, RIProtection is capable of monitoring any branch
instruction. Therefore, the monitoring of e.g. jmp
instructions could be realized to implement a mech-
anism to prevent jump-oriented programming in the
future (Checkoway et al., 2010).

3.2 Single Step on Branches

To realize ILM, RIProtection makes use of the Intel
x86 debug capabilities like the hardware supported
feature for single stepping. If the TF flag in the
EFLAGS register is set, the processor generates an
exception on every instruction. Since single step-
ping allows monitoring all instructions, it is slow in
terms of performance because each instruction causes
a context switch to the kernel. A rather unknown
flag in the IA32_DEBUGCTL MSR, the branch trap flag
(BTF), causes the processor to treat the TF flag in the
EFLAGS register only as a single step on branches
rather than a single step on each instruction (Corpora-
tion, 2014).

A branch is actually every instruction that does not
incrementally raise the PC such that noticeable over-
head is especially accounted by instructions of the
jmp family. Every time the PC is explicitly loaded
with an address rather than being implicitly incre-
mented, a debug exception is generated. A debug ex-
ception caused by the BTF flag is a synchronous inter-
rupt and is categorized as a trap (Corporation, 2014).
This means that the processor generates an interrupt
after an instruction was executed. This information is
important as it affects the steps needed to access and
modify the RIP.

The handling of call and ret is as follows. When
a call is executed, the RIP is already on the stack
and can directly be processed by one of the security
modules. The ret case, however, is more complex
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because the ret instruction occasionally reads ille-
gal addresses, e.g. if the RIP on the program stack
is modified by the security module. But even though
the program counter is already loaded with the RIP,
the processor has not yet begun with the instruction
fetch. Consequently, the PC can be processed with-
out touching the RIP on the stack. It becomes chal-
lenging to determine the branch type if the interrupt
is triggered after instruction execution. In a bare soft-
ware approach, this task would involve reading the
RIP from the stack and disassembling it to find the
instruction that caused the branch. This is tricky be-
cause of the variable length of CISC instructions.

However, modern processors offer the possibil-
ity to monitor the source and destination of taken
branches, interrupts and exceptions in a set of reg-
isters called the last branch record (LBR). As these
entries are captured using bare hardware and regis-
ters instead of memory, it has near-zero performance
impact. Although not widely used in the past, LBR
registers are available since the Pentium 4 architec-
ture (Corporation, 2014) and initially offered four
model-specific registers that record the from and to
address of a taken branch. Furthermore, the LBR can
be configured to record only taken branches in the
user-level. Therefore, any architecture that supports
the LBR is suitable for RIProtection.

3.3 XOR Security Module

We implemented two security modules, one based
on XOR encryption and another based on a shadow
stack, both of which rely on monitoring call and ret
instructions.

. . .

RIP
. . .

call

. . .

RIP⊕secret
. . .

ret

. . .

RIP
. . .

Figure 3: The XOR security module.

The XOR module acquires a unique random key
when the process is protected. During execution of
the program, call and ret can be treated in the
same fashion because XOR is used to encrypt and de-
crypt the RIP with the process secret. This approach
does not have any logic probing whether a RIP was
modified because the XOR encryption on each call
and ret already establishes an implicit program ter-
mination if an attacker tampered a RIP. Overwriting
the RIP with plaintext addresses results in illegal ad-
dresses and consequently in process termination due
to segmentation violation as the RIP on the stack is
XOR-processed on each ret. 3 illustrates these steps.

3.4 Shadow Stack Security Module

. . .

RIP
. . .

ret

. . . . . .

SP RIP
. . . . . .

shadow stack

add

call

found?

no kill

yes match?

no

yes

resume

Figure 4: The shadow stack security module.

As visualized in 4, the shadow stack approach does
not modify the RIP on the program stack. In contrast
to the XOR module, the shadow stack requires addi-
tional bookkeeping structures for the RIPs. On call,
a new mapping on the shadow stack is created using
the SP as key and the RIP as value. On ret, the SP
is used to retrieve the shadow RIP. Our implementa-
tion of the shadow stack uses a map of key-value pairs
rather than only saving the return address. Related
work such as the ROPDefender only saves the RIP
on a call and, therefore, needs separate handling for
functions or exceptions that jump over several stack
frames. If the SP value is saved as a key, no special
treatment is required and the list is traversed in re-
verse order to find the matching entry. The correct
entry, according to the stack data structure, is usually
the last entry added. If, however, no entry is found or
the PC and the shadow RIP do not match, the program
is killed. Otherwise, the program is resumed.

3.5 Implementation

This section explains the technical implementation of
the design described in the previous section. The im-
plementation of RIProtection is carried out as a Linux
v3.13 kernel patch for Ubuntu 14.04.1 LTS in about
1,000 lines of code. Overall, the patch modifies 12
existing files and adds four new files.

5 shows the architecture and execution flow of
RIProtection. To indicate whether a program is to
be protected by RIProtection, we modified the ker-
nel code of the ELF binary handler. RIProtection
introduces EI_RIProtection at byte 8 of the ELF
header, which is labeled as R in 5. If R is set to a
value greater than zero, RIProtection invokes ripro-
tection_protect just before the new process is ex-
ecuted. In this step, RIProtection adds the task to
its internal list of protected tasks and sets the TF
flag in the EFLAGS register as well as the LBR and
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Figure 5: The architecture of RIProtection: The execution flow and interaction of user-mode, kernel-mode and processor
features. Functions and features introduced by RIProtection are filled with a yellow background.

BTF bit in the IA32_DEBUGCTL MSR. From this point
on, the CPU records all branches, interrupts and ex-
ceptions taken in user space. Furthermore, an inter-
rupt is generated on each branch. Additionally, the
protect function determines which security module
(XOR or shadow stack) is used and invokes the ini-
tialization handler of the selected module. For the
XOR method, the initialization involves only acquir-
ing a task-specific 48- or 32-bit random key using
get_random_bytes for x86_64 and IA-32 binaries
respectively. If the shadow stack module is used, it
allocates and initializes the head of the shadow stack
list structure.

When the kernel receives an interrupt due to
a branch instruction in the protected program,
do_debug is called. In this function, handle_branch
is executed if the task is in the list of protected tasks.
In this case, handle_branch retrieves the most re-
cent from-entry of the LBR to find out the address
of the instruction that caused the interrupt. The
handle_branch function also increments the task-

specific counters for ret, call and the total amount
of branches depending on the type of branch. These
statistics are available through the /proc filesystem
for all running tasks which are protected by RIProtec-
tion and are also available for the protected task that
terminated most recently.

Both security modules need to read the RIP. If the
debug trap occurred due to a call instruction, the ad-
dress of the following address (i.e. the RIP) was al-
ready pushed on the stack. Hence, the call handler
needs to copy the RIP to the kernel space. In the fol-
lowing, the XOR approach encrypts the RIP with the
process secret and write it back. The shadow stack
creates a new entry in the shadow list, which consists
of key-value pairs while the current value of the SP
acts as a key and RIP as a value.

As soon as a ret is executed, the program counter
is already loaded with the entry found on the pro-
cess stack as depicted by the current value of the SP.
Therefore, the user space stack of the process is not
accessed for retrieving the RIP. Instead, the ret han-
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dler routine of the security module directly reads the
task’s program counter. Not even the XOR module
needs to access the process memory after decrypting
the address because the value of the SP was already
increased and entries with a lower value than the cur-
rent SP are free by definition. The detection of RIP
tampering is implicit for the XOR module. There is
no explicit logic in the code that marks code as ma-
licious and causes RIProtection to terminate the pro-
cess. Nevertheless, the process is indirectly killed due
to a segmentation violation.

The ret handler of the shadow stack approach
must first look for the correct entry in its internal
list by comparing the SP key of entries with the cur-
rent SP value incremented by one. Later, the shadow
RIP is compared to the RIP loaded into the program
counter. If both do not match, the RIP was tampered
with and the process is terminated. In the case that no
entry matches the incremented SP value, the program
counter is loaded with an address that was not placed
using a call instruction and the program is killed. In
this situation, an attacker likely tried to launch a ROP
attack and the normal control flow of the program was
tampered. If an entry in the shadow stack is found
and matches, the entry is removed from the list and
the program is resumed.

If handle_branch could neither detect a call nor
a ret, the control is immediately transferred back to
the application. This is not a rare case as a trap is also
generated for all jmp instructions that are common in
every program. Unfortunately, it is impossible to filter
out jmps in hardware leading to a severe performance
drawback of our approach as explained in 4.2.

For every process, do_exit is eventually called.
This is also true if the program is killed instead of ex-
plicitly calling exit(2). When this point is reached,
abandon is called and disables TF and BTF, and re-
leases the perf events kernel counter to stop cap-
turing branches for that task. Ultimately, the task is
removed from the list of protected tasks.

4 EVALUATION

In this section, we evaluate RIProtection and the XOR
and shadow stack modules in terms of security, per-
formance and compatibility. All three categories were
examined running Ubuntu 14.04.1 LTS using a hyper-
threaded, dual-core Intel Core i5-650.

4.1 Security

This section is dedicated to the security evaluation
and discussion of RIProtection. The underlying XOR

and shadow stack security modules are examined in-
dividually and in contrast to each other.

First, we will consider if it is possible to entirely
disable the instruction-level monitoring facilities of
RIProtection. The single step on branches method de-
pends on two values. The TF flag in the EFLAGS reg-
ister and the BTF flag in the IA32_DEBUGCTL MSR.
Model-specific registers can only be accessed from
the kernel-level and, therefore, are usually not acces-
sible from the user space (Corporation, 2014). Con-
sequently, the IA32_DEBUGCTL is well-protected and
tampering with it is not easy. The EFLAGS regis-
ter, however, can be modified using the pushf and
popf instructions. This is not a security flaw, even
though clearing the TF flag in the EFLAGS register
disables single stepping completely because attackers
must first gain control over the execution flow to ex-
ecute these instructions. As covered in detail in the
following section about the compatibility of RIProtec-
tion, the TF flag in the EFLAGS register may not be
modified by the application itself. Otherwise, RIPro-
tection cannot protect the program.

4.1.1 XOR Module

Although RIProtection’s instruction-monitoring facil-
ities cannot be disabled, it might be possible to get
around its underlying security modules while they are
in use. In many aspects, the protection and the attack
surface of RIProtection operating in XOR mode can
be compared to stack canaries as used by StackGuard.
As explained in 2, canaries place a unique and ran-
dom value beside the RIP. This value is checked in the
function epilogue just before a ret is executed. If the
check fails, the program is terminated. The XOR se-
curity module does not require an individual check af-
ter ret execution because the XOR with the process-
specific secret creates an invalid address as long as the
attacker does not know the process-specific secret. As
already stated, however, stack canaries also rely on
such a secret and it also has been proved that they can
be bypassed (Bulba and Kil3r, 2000). Usually, this is
achieved by exploiting an information leakage vulner-
ability that reveals the value of the canary. Afterward
a buffer overflow vulnerability is exploited, for exam-
ple, and the canary value is simply rewritten.

In a similar way, the XOR security module of
RIProtection cannot withstand an information leak-
age vulnerability that allows the attacker to read the
value of the RIP. The RIP is encrypted using a sim-
ple XOR of the secret and the original RIP. It comes
in handy for the implementation of the approach that
the inverse function of the XOR function is the XOR
function again. However, if an adversary has knowl-
edge of an encrypted RIP and knows the original ad-
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dress, he or she can deduce the secret easily. As far
as Linux is concerned, the address of the original RIP
is often statically known because the .text section
is sometimes unaffected by ASLR because of perfor-
mance reasons.

Even with full ASLR enabled, the key space of the
XOR module can be reduced due to the nature of the
XOR function. The offsets between instructions are
still known and if an adversary is able to leak more
than one XOR encrypted RIP he or she can leak at
most as many bits as the highest offset between two
XOR encrypted RIPs. In general, the process secret of
a 64-bit executable protected by RIProtection in the
XOR operation mode has as an entropy of 48-bit as
the remaining most significant bits are currently sign-
extended with bit 47. The offset between the RIPs
is statically known and the following expression is
true: RIP1⊕RIP2 =(RIP1⊕secret)⊕(RIP2⊕secret).
With those two conditions the key space is potentially
reduced with every leaked address and an adversary
might be able to compute the secret within a reason-
able period. Nevertheless, this remains to be a rather
theoretical vulnerability as the key can be easily com-
puted if an attacker is able to leak memory.

At first glance, full ASLR cannot provide en-
hanced security, as ASLR is also vulnerable to in-
formation leakage attacks. Nevertheless, consider an
example of a program with an information leakage
vulnerability for which an attacker wants to execute
ROP gadgets that reside in the program’s .text sec-
tion. Additionally, assume that the program is exe-
cuted in an environment where full ASLR and NX
are enabled. The first approach that an adversary
would usually take to create the ROP payload is to
read the RIP because it provides a perfect address for
the .text section. If RIProtection with XOR encryp-
tion is in charge, this would fail due to the encryption
of the RIP with a so far unknown secret. On the other
hand, the adversary cannot compute the secret, even
though he or she is able to read the encrypted RIP.
To achieve this, the attacker needs to determine the
real, unencrypted RIP, which is protected by ASLR.
Nevertheless, even such a scenario cannot disable this
kind of attack entirely. An attacker might leak a func-
tion pointer or any other data pointing to .text and,
thus, be able to compute the process secret.

4.1.2 Shadow Stack Module

The shadow stack security module pursues a differ-
ent approach than the XOR-based encryption and is
slightly more complicated. When a ret instruction
is executed after an attack begins, there are two cases
where the shadow stack provides protection. If the
RIP is modified directly, the handler function finds

a shadow RIP that differs from the address that is
loaded into the PC. Consequently, the process is ter-
minated. The other case assumes that an attacker
could start an exploit that does not take over the con-
trol flow by modifying the RIP. This can be achieved
by GOT hijacking, for example. To execute further
malicious instructions, a code-reuse attack like ROP
can be used. If RIProtection is used in its shadow
stack mode, this fails because ROP will execute a se-
ries of gadgets ending in a ret instruction without a
corresponding call. As a result, the shadow list of
the shadow stack security module cannot find an entry
for the SP value and accounts for this by terminating
the program. The attack surface of the shadow stack
approach is substantially different from that of the
XOR mode because it does not reveal any of the data
it operates on to the process. Therefore, the shadow
stack does not provide any points to attack for infor-
mation leakage because its data resides entirely in the
kernel space.

The shadow stack can not only protect the pro-
gram from classic RIP modification and ROP, but is
also not disabled easily. The fact that the XOR se-
curity module is vulnerable to information leakage
makes it especially inferior because two widely used
safeguards, ASLR and canaries, provide the same at-
tack surface. Therefore, an attacker might circumvent
ASLR, canaries and RIProtection in its XOR mode
using the same vulnerability.

4.2 Performance
We acquired our performance data using the
nbench2 (Mayer, 2011) CPU benchmark which mea-
sures the operations per second for various algo-
rithms. Note that the benchmark offers three more
tests but those were omitted to improve the readabil-
ity of the results as even their native test performance
scores below 10 operations per second.

Our evaluation compares the performance without
and with RIProtection running in either the XOR or
shadow stack operation mode. The results are de-
picted in 6 and visualize the run-time multiplier of
RIProtection. Furthermore, we also evaluated how
often RIProtection was invoked due to a call/ret
instruction or due to any other branch. The bench-
marking result for the run-time multiplier yields a no-
ticeable performance overhead introduced by RIPro-
tection ranging from 93 for the FP Emulation test to
827 for the LU Decomposition test. The average op-
erations per second is almost equal, being 46.39 for
XOR and 46.10 for the shadow stack. For tests with a
high call-ret amount, e.g. the Fourier test, the XOR
tends to perform slightly better than the shadow stack
operation mode.
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Figure 6: Benchmarking results for various tests of the nbench2 CPU benchmark. The green bar shows the iterations per
second using nbench2 without protection while the blue and red bars indicate a run using the XOR and shadow stack operation
modes respectively. The other graphs display the average run-time multiplier of both security modules while the dashed and
dash-dotted graphs indicate the number of branches due to a call or ret and the total amount of branches.

In general, one would expect the XOR-based en-
cryption to perform notably better than the shadow
stack because it does not require any additional struc-
tures on each call or ret and provides constant op-
eration time for every invocation of its logic. The re-
sults, however, indicate that the advantage of XOR is
minimal and that most of the average run-time per-
formance differences stem from measuring inaccu-
racy. This suggests that the overall bottleneck is not
the underlying security module but the BTF-based
instruction-monitoring approach of the ILM unit.

Furthermore, one would assume that the run-time
multiplier is linearly dependent on the total count of
branches because each one causes an interrupt. The
LU Decomposition test result, however, has the high-
est run-time multiplier but a branch count that is 22%
below the average number of branches. This suggests
that the LU Decomposition test suffers from the con-
text switch which also has an effect on the contents of
the CPU cache.

The performance overhead introduced by RIPro-
tection has primarily two reasons. The first one is
that the BTF flag triggers a debug trap whenever a
branch occurs. This is especially an issue for jmp
instructions that occur often. The second reason is
that an interrupt is per se a time-consuming operation
that involves an expensive context switch to kernel-
mode that also confuses hardware components like
the CPU cache. Nevertheless, the performance evalu-
ation shows that global statements on the performance
of programs cannot be made because it is highly de-

pendent on the structure of the program.

4.3 Compatibility

RIProtection can protect any 64-bit ELF program that
runs in user-mode if the following requirements are
met. In any case, RIProtection must be explicitly en-
abled , as explained in 3.5.

First, the hardware requirements of RIProtection
must be met. As already stated in 3, the CPU needs
to support single stepping on branches and the last
branch record. The number of branches that the LBR
can record has increased with processor generations
but for RIProtection only one entry is required. As
any Intel CPU that features the LBR also supports
BTF, only a CPU with LBR is required.

Another primary requirement of RIProtection is
that a program does not modify the TF flag in the
EFLAGS register. The EFLAGS are indirectly mod-
ified by the pushf and popf instructions and, hence,
protected applications are not allowed to use these in-
structions. Due to this limitation, single step debug-
ging is neither allowed, because the debugger modi-
fies the EFLAGS, nor possible, as the debugger does
not receive any signals due to RIProtection. More-
over, the backtrace feature that many debuggers usu-
ally offer cannot be used if RIProtection protects the
debugged process in XOR mode, because all the RIPs
are encrypted.

Furthermore, the compiler that was used or is used
to build the program needs to follow the convention
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that a ret is a return from a procedure previously
called using a call instruction (Corporation, 2014).
This is certainly true for popular compilers like GCC
and LLVM but may not be the case for some obfus-
cated binaries. The same applies to the use of (in-
line) assembler and therefore must not tamper with
any RIP and must not introduce ret instructions that
read a RIP not placed by its corresponding call.

Multi-threaded applications follow the same line.
RIProtection supports multi-threading as long as
threads are managed in kernel-mode. It is important
that the scheduling of threads is carried out in the ker-
nel as the scheduler needs to execute a ret without
a corresponding call. This violates the fundamental
assumption of RIProtection. However, this operation
is not a problem inside the kernel because RIProtec-
tion applies its defense mechanisms only to user-level
programs and, therefore, is only triggered there.

5 FUTURE WORK

The XOR security module could be hardened against
information leakage by increasing the number of task-
specific secrets to n. As a consequence, the log2(n)
least significant or most significant bits could indicate
the key to use. This has the drawback that log2(n)
bits of entropy are lost. One needs to take care that
the entropy does not drop too low. In general, the
concept would require slightly more space but main-
tains an easy approach. Moreover, additional security
could be introduced by implementing the concept of
call-preceded rets as is also found in related work.
In a case where an adversary was able to leak the se-
cret and, consequently, is able to generate a valid ROP
payload, he or she is at least forced to use gadgets that
are call-preceded.

Even though the security modules already rely on
a modular design and can be easily implemented, they
are still part of the Linux kernel. The development
of additional security modules would be easier and
more convenient if each security approach is a sepa-
rate loadable kernel module (LKM).

The security evaluation of the XOR approach re-
veals that the shadow stack module is superior in
terms of protection. However, the XOR approach is
still of interest because it could be easily realized in
hardware by introducing a register that holds the task-
specific secret. The ⊕ encryption on call and ret
could be achieved in a similar fashion to RIProtec-
tion. If implemented in hardware, the attack surface
would remain the same but probably with a near-zero
performance impact. In fact, AMD has a patent on
Hardware Based Return Pointer Encryption (Kaplan,

2014) that was published in June 2014 and has a sim-
ilar concept to the proposed idea.

The implementation of the shadow stack approach
in hardware is a more challenging task as a logic must
be implemented to find the appropriate entry in the
shadow stack. The concept of a shadow stack would
necessarily lead to a slow down because it involves
memory access on every call and ret. To increase
the performance, a cache that holds the most recent
branches could be used.

Both of the presented security modules address
only ret-based exploitation techniques like ROP.
Therefore, they cannot protect programs that can
launch an attack that e.g. relies on jump-oriented
programming (Checkoway et al., 2010). As a conse-
quence, a security module that protects against ret-
and jmp-based exploitation is of interest. RIPro-
tection is capable of monitoring arbitrary branches
but program protection against jmp-based exploita-
tion is a more challenging task because, in contrast to
ret-based techniques, no corresponding instruction
as call for ROP exists to determine if control is going
to a legal branch target. Compared to the XOR and
shadow stack security modules, an approach to miti-
gate jump-oriented programming would likely result
in a similar performance evaluation because the over-
head is for the most part caused by the instruction-
level monitoring of RIProtection.

6 CONCLUSION

We presented RIProtection, a novel approach that
utilizes the single step on branches hardware de-
bug feature to provide instruction-level monitoring of
branches. For its modular system, we developed a
XOR and a shadow stack security approach where
both operate whenever a call or ret instruction oc-
curs. The chapter on the design and implementation
of RIProtection showed that our generic concept can
be adopted quite well by single modules. The fol-
lowing chapter evaluated RIProtection in terms of se-
curity, performance and compatibility. This conclud-
ing chapter summarizes the limitations of RIProtec-
tion has and proposes some ideas for how the imple-
mentation could be further improved.

As far as security is concerned, RIProtection can,
in both operation modes, reliably prevent the exploita-
tion of a buffer overflow that tries to overwrite the
RIP with the raw value of an address found in an ex-
ecutable program section. As already discussed, the
XOR approach might be circumvented by informa-
tion leakage vulnerability. The shadow stack, how-
ever, is immune against memory disclosure and pro-
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vides overall solid protection against ret-based ex-
ploitation.

The performance evaluation of RIProtection re-
veals that its usage in the field is highly dependent on
the structure of the program and makes global state-
ments on the expected performance of protected pro-
grams difficult. In any case, RIProtection introduces
a significant performance impact.

In means of compatibility RIProtection provides
excellent support for every x86_64 binary created
from standard C with a compiler that respects con-
ventions. The security module that should be used
can conveniently be chosen by only altering the re-
spective byte in the program ELF header.
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