Fully Automated Lung Volume Assessment from MRI in a Population-based Child Cohort Study

Tatyana Ivanovska, Pierluigi Ciet, Adria Perez-Rovira, Anh Nguyen, Harm Tiddens, Liesbeth Duijts, Marleen de Bruijne, Florentin Wöergöetter

Abstract

In this work, a framework for fully automated lung extraction from magnetic resonance imaging (MRI) inspiratory data that have been acquired within a on-going epidemiological child cohort study is presented. The method’s main steps are intensity inhomogeneity correction, denoising, clustering, airway extraction and lung region refinement. The presented approach produces highly accurate results (Dice coefficients ≥ 95%), when compared to semi-automatically obtained masks, and has potential to be applied to the whole study data.

References

  1. Arens, R., McDonough, J. M., Corbin, A. M., Rubin, N. K., Carroll, M. E., Pack, A. I., Liu, J., and Udupa, J. K. (2003). Upper airway size analysis by magnetic resonance imaging of children with obstructive sleep apnea syndrome. American journal of respiratory and critical care medicine, 167(1):65-70.
  2. Balafar, M. A., Ramli, A. R., Saripan, M. I., and Mashohor, S. (2010). Review of brain mri image segmentation methods. Artificial Intelligence Review, 33(3):261- 274.
  3. Bezdek, J. C., Ehrlich, R., and Full, W. (1984). Fcm: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2):191-203.
  4. Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3):297-302.
  5. Frangi, A. F., Niessen, W. J., Vincken, K. L., and Viergever, M. A. (1998). Multiscale vessel enhancement filtering. In Medical Image Computing and ComputerAssisted InterventationMICCAI98, pages 130-137. Springer.
  6. Heckel, F., Schwier, M., and Peitgen, H.-O. (2009). Objectoriented application development with mevislab and python. In GI Jahrestagung, pages 1338-1351. Citeseer.
  7. Heimann, T., Eichinger, M., Bauman, G., Bischoff, A., Puderbach, M., and Meinzer, H.-P. (2012). Automated scoring of regional lung perfusion in children from contrast enhanced 3d mri. In SPIE Medical Imaging, pages 83150U-83150U. International Society for Optics and Photonics.
  8. Hetterich, H., Bayerl, C., Peters, A., Heier, M., Linkohr, B., Meisinger, C., Auweter, S., Kannengießer, S. A., Kramer, H., Ertl-Wagner, B., et al. (2015). Feasibility of a three-step magnetic resonance imaging approach for the assessment of hepatic steatosis in an asymptomatic study population. European radiology, pages 1-10.
  9. Ivanovska, T., Buttke, E., Laqua, R., Völzke, H., and Beule, A. (2011). Automatic trachea segmentation and evaluation from mri data using intensity pre-clustering and graph cuts. In Image and Signal Processing and Analysis (ISPA), 2011 7th International Symposium on, pages 513-518. IEEE.
  10. Ivanovska, T., Hegenscheid, K., Laqua, R., Gläser, S., Ewert, R., and Völzke, H. (2016). Lung segmentation of mr images: A review. In Visualization in Medicine and Life Sciences III, pages 3-24. Springer.
  11. Ivanovska, T., Hegenscheid, K., Laqua, R., Kühn, J.-P., Gläser, S., Ewert, R., Hosten, N., Puls, R., and Völzke, H. (2012). A fast and accurate automatic lung segmentation and volumetry method for mr data used in epidemiological studies. Computerized Medical Imaging and Graphics, 36(4):281-293.
  12. Ivanovska, T., Laqua, R., Wang, L., Liebscher, V., Völzke, H., and Hegenscheid, K. (2014). A level set based framework for quantitative evaluation of breast tissue density from mri data. PloS one, 9(11):e112709.
  13. Jaddoe, V. W., van Duijn, C. M., Franco, O. H., van der Heijden, A. J., van IIzendoorn, M. H., de Jongste, J. C., van der Lugt, A., Mackenbach, J. P., Moll, H. A., Raat, H., et al. (2012). The generation r study: design and cohort update 2012. European journal of epidemiology, 27(9):739-756.
  14. Kohlmann, P., Strehlow, J., Jobst, B., Krass, S., Kuhnigk, J.- M., Anjorin, A., Sedlaczek, O., Ley, S., Kauczor, H.- U., and Wielpütz, M. O. (2015). Automatic lung segmentation method for mri-based lung perfusion studies of patients with chronic obstructive pulmonary disease. International journal of computer assisted radiology and surgery, 10(4):403-417.
  15. Liu, J., Udupa, J. K., Odhner, D., McDonough, J. M., and Arens, R. (2002). Upper airway segmentation and measurement in mri using fuzzy connectedness. In Medical Imaging 2002, pages 238-247. International Society for Optics and Photonics.
  16. Perona, P., Shiota, T., and Malik, J. (1994). Anisotropic diffusion. In Geometry-driven diffusion in computer vision, pages 73-92. Springer.
  17. Real, R. and Vargas, J. M. (1996). The Probabilistic Basis of Jaccard's Index of Similarity. Systematic Biology, 45(3):380-385.
  18. Roerdink, J. B. and Meijster, A. (2000). The watershed transform: Definitions, algorithms and parallelization strategies. Fundamenta informaticae, 41(1, 2):187- 228.
  19. Setarehdan, S. K. and Singh, S. (2012). Advanced algorithmic approaches to medical image segmentation: state-of-the-art applications in cardiology, neurology, mammography and pathology. Springer Science & Business Media.
  20. Sonka, M., Hlavac, V., and Boyle, R. (2014). Image Processing, Analysis, and Machine Vision. Cengage Learning.
  21. Thayyil, S., Schievano, S., Robertson, N. J., Jones, R., Chitty, L. S., Sebire, N. J., Taylor, A. M., group, M. M. R. I. A. S. C., et al. (2009). A semi-automated method for non-invasive internal organ weight estimation by post-mortem magnetic resonance imaging in fetuses, newborns and children. European journal of radiology, 72(2):321-326.
  22. Toennies, K. D., Gloger, O., Rak, M., Winkler, C., Klemm, P., Preim, B., and Völzke, H. (2015). Image analysis in epidemiological applications. it-Information Technology, 57(1):22-29.
  23. Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., and Gee, J. C. (2010). N4itk: improved n3 bias correction. Medical Imaging, IEEE Transactions on, 29(6):1310-1320.
  24. Tustison, N. J., Avants, B. B., Flors, L., Altes, T. A., de Lange, E. E., Mugler, J. P., and Gee, J. C. (2011). Ventilation-based segmentation of the lungs using hyperpolarized 3he mri. Journal of Magnetic Resonance Imaging, 34(4):831-841.
  25. Tustison, N. J., Qing, K., Wang, C., Altes, T. A., and Mugler, J. P. (2015). Atlas-based estimation of lung and Völzke, H., Alte, D., Schmidt, C. O., Radke, D., Lorbeer, R., Friedrich, N., Aumann, N., Lau, K., Piontek, M., Born, G., et al. (2011). Cohort profile: the study of health in pomerania. International journal of epidemiology, 40(2):294-307.
Download


Paper Citation


in Harvard Style

Ivanovska T., Ciet P., Perez-Rovira A., Nguyen A., Tiddens H., Duijts L., de Bruijne M. and Wöergöetter F. (2017). Fully Automated Lung Volume Assessment from MRI in a Population-based Child Cohort Study . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 6: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-227-1, pages 53-58. DOI: 10.5220/0006075300530058


in Bibtex Style

@conference{visapp17,
author={Tatyana Ivanovska and Pierluigi Ciet and Adria Perez-Rovira and Anh Nguyen and Harm Tiddens and Liesbeth Duijts and Marleen de Bruijne and Florentin Wöergöetter},
title={Fully Automated Lung Volume Assessment from MRI in a Population-based Child Cohort Study},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 6: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={53-58},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006075300530058},
isbn={978-989-758-227-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 6: VISAPP, (VISIGRAPP 2017)
TI - Fully Automated Lung Volume Assessment from MRI in a Population-based Child Cohort Study
SN - 978-989-758-227-1
AU - Ivanovska T.
AU - Ciet P.
AU - Perez-Rovira A.
AU - Nguyen A.
AU - Tiddens H.
AU - Duijts L.
AU - de Bruijne M.
AU - Wöergöetter F.
PY - 2017
SP - 53
EP - 58
DO - 10.5220/0006075300530058