A Hierarchical Magnification Approach for Enhancing the Insight in Data Visualizations

Stavros Papadopoulos, Anastasios Drosou, Dimitrios Tzovaras

Abstract

Non-linear deformations are useful for applications where users face highly cluttered visual displays, either due to large datasets, or visualizations on small screens, or a combination of both, that increases the density of the data and makes the perception of patterns difficult. Non-linear deformations have been used to magnify significant/cluttered regions in data visualization, for the purpose of reducing clutter and enhancing the perception of patterns. General deformation methods (e.g. logarithmic scaling and fish-eye views) suffer from several drawbacks, since they do not consider the prominent features that must be preserved in the visualization. This work introduces a hierarchical approach for non-linear deformation that aims to reduce visual clutter by magnifying significant regions, and lead to enhanced visualizations of two/three-dimensional datasets on highly cluttered displays. The proposed approach utilizes an energy function, which aims to determine the optimal deformation for every local region in the data, taking the information from multiple single-layer significance maps into account. The problem is subsequently transformed into an optimization problem for the minimization of the energy function under specific spatial constraints. The proposed hierarchical approach for the generation of the significance map, surpasses current methods, and manages to efficiently identify significant regions and achieve better results.

References

  1. Bertini, E. and Santucci, G. (2006). Give chance a chance: Modeling density to enhance scatter plot quality through random data sampling. Information Visualization, 5(2):95-110.
  2. Brewer, C. A. (1994). Cartography: thematic map design. Cartographic Perspectives, (17):26-27.
  3. Brewer, C. A. and Pickle, L. (2002). Evaluation of methods for classifying epidemiological data on choropleth maps in series. Annals of the Association of American Geographers, 92(4):662-681.
  4. Census (2014). US Census Bureau (available at http://www.census.gov/).
  5. Cortez, P. and Morais, A. d. J. R. (2007). A data mining approach to predict forest fires using meteorological data.
  6. Cover, T. M. and Thomas, J. A. (2012). Elements of Information Theory. John Wiley & Sons.
  7. Cui, W., Wu, Y., Liu, S., Wei, F., Zhou, M. X., and Qu, H. (2010). Context preserving dynamic word cloud visualization. In Pacific Visualization Symposium (PacificVis), 2010 IEEE , pages 121-128. IEEE.
  8. Eisemann, M., Albuquerque, G., and Magnor, M. (2011). Data driven color mapping. Proceedings EuroVA.
  9. Ellis, G. and Dix, A. (2007). A taxonomy of clutter reduction for information visualisation. Visualization and Computer Graphics, IEEE Transactions on, 13(6):1216-1223.
  10. Endres, D. M. and Schindelin, J. E. (2003). A new metric for probability distributions. Information Theory, IEEE Transactions on, 49(7):1858-1860.
  11. Fagin, R., Kumar, R., and Sivakumar, D. (2003). Comparing top k lists. SIAM Journal on Discrete Mathematics, 17(1):134-160.
  12. Gao, X., Xiao, B., Tao, D., and Li, X. (2010). A survey of graph edit distance. Pattern Analysis and applications, 13(1):113-129.
  13. Hautamäki, V., Kinnunen, T., and Fränti, P. (2008). Textindependent speaker recognition using graph matching. Pattern Recognition Letters, 29(9):1427-1432.
  14. Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunii, T. L. (2001). Topology matching for fully automatic similarity estimation of 3D shapes. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 203-212. ACM.
  15. Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11):1254-1259.
  16. Jia, S., Zhang, C., Li, X., and Zhou, Y. (2014). Mesh resizing based on hierarchical saliency detection. Graphical Models.
  17. Keim, D. A., Hao, M. C., Dayal, U., Janetzko, H., and Bak, P. (2010). Generalized scatter plots. Information Visualization, 9(4):301-311.
  18. Lee, C. H., Varshney, A., and Jacobs, D. W. (2005). Mesh saliency. In ACM Transactions on Graphics (TOG), volume 24, pages 659-666. ACM.
  19. Maciejewski, R., Pattath, A., Ko, S., Hafen, R., Cleveland, W. S., and Ebert, D. S. (2013). Automated box-cox transformations for improved visual encoding. Visualization and Computer Graphics, IEEE Transactions on, 19(1):130-140.
  20. Mademlis, A., Daras, P., Axenopoulos, A., Tzovaras, D., and Strintzis, M. G. (2008). Combining topological and geometrical features for global and partial 3-D shape retrieval. Multimedia, IEEE Transactions on, 10(5):819-831.
  21. Rosenholtz, R., Li, Y., Mansfield, J., and Jin, Z. (2005). Feature congestion: a measure of display clutter. In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 761-770. ACM.
  22. Tao, J., Wang, C., Shene, C.-K., and Kim, S. H. (2014). A Deformation Framework for Focus+Context Flow Visualization. Visualization and Computer Graphics, IEEE Transactions on, 20(1):42-55.
  23. Thompson, D., Bennett, J., Seshadhri, C., and Pinar, A. (2013). A provably-robust sampling method for generating colormaps of large data. In Large-Scale Data Analysis and Visualization (LDAV), 2013 IEEE Symposium on, pages 77-84. IEEE.
  24. Tung, T. and Schmitt, F. (2005). The Augmented Multiresolution Reeb Graph Approach for Content-based Retrieval of 3d Shapes. International Journal of Shape Modeling, 11(1):91-120.
  25. Wang, Y.-S., Tai, C.-L., Sorkine, O., and Lee, T.-Y. (2008). Optimized scale-and-stretch for image resizing. In ACM Transactions on Graphics (TOG), volume 27, page 118. ACM.
  26. Wang, Y.-S., Wang, C., Lee, T.-Y., and Ma, K.-L. (2011). Feature-preserving volume data reduction and focus+ context visualization. Visualization and Computer Graphics, IEEE Transactions on, 17(2):171-181.
  27. Wong, P. C. and Thomas, J. (2009). Visual analytics: building a vibrant and resilient national science. Information Visualization, 8(4):302-308.
  28. Wu, Y., Liu, X., Liu, S., and Ma, K.-L. (2013). ViSizer: a visualization resizing framework. Visualization and Computer Graphics, IEEE Transactions on, 19(2):278-290.
  29. Zwislocki, J. J. (2009). Stevens' Power Law. Sensory Neuroscience: Four Laws of Psychophysics, pages 1-80.
Download


Paper Citation


in Harvard Style

Papadopoulos S., Drosou A. and Tzovaras D. (2017). A Hierarchical Magnification Approach for Enhancing the Insight in Data Visualizations . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017) ISBN 978-989-758-228-8, pages 29-39. DOI: 10.5220/0006073400290039


in Bibtex Style

@conference{ivapp17,
author={Stavros Papadopoulos and Anastasios Drosou and Dimitrios Tzovaras},
title={A Hierarchical Magnification Approach for Enhancing the Insight in Data Visualizations},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017)},
year={2017},
pages={29-39},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006073400290039},
isbn={978-989-758-228-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017)
TI - A Hierarchical Magnification Approach for Enhancing the Insight in Data Visualizations
SN - 978-989-758-228-8
AU - Papadopoulos S.
AU - Drosou A.
AU - Tzovaras D.
PY - 2017
SP - 29
EP - 39
DO - 10.5220/0006073400290039