iFR: Interactively Pose Corrected Face Recognition

Simon Nash, Mark Rhodes, Joanna Isabelle Olszewska

Abstract

Although face recognition applications are growing, robust face recognition is still a challenging task due e.g. to variations in face poses, facial expressions, or lighting conditions. In this paper, we propose a new method which allows both automatic face detection and recognition and incorporates an interactive selection of facial features in conjunction with our new pose-correction algorithm. Our resulting system we called iFR successfully recognizes faces across pose, while being computationally efficient and outperforming standard approaches, as demonstrated in tests carried out on publicly available standard datasets.

References

  1. Ahonen, T., Hadid, A., and Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12):2037-2041.
  2. Bordoloi, H. and Sarma, K. K. (2009). Face recognition with image rotation detection, correction and reinforced decision using ANN. International Journal of Electrical and Electronics Engineering, 3(7):1205- 1212.
  3. Brunelli, R. and Poggio, T. (1993). Face recognition: features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(10):1042- 1052.
  4. Choi, J. Y., Neve, W. D., Plataniotis, K. N., and Ro, Y. M. (2011). Collaborative face recognition for improved face annotation in personal photo collections shared on online social networks. IEEE Transactions on Multimedia, 13(1):14-18.
  5. Cootes, T. F., Edwards, G. J., and Taylor, C. J. (2001). Active appearance model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6):681-685.
  6. Du, S. and Ward, R. (2006). Face recognition under pose variations. Journal of the Franklin Institute, 343(6):596-613.
  7. Gallego-Jutgla, E., de Ipina, K. L., Marti-Puig, P., and SoleCasals, J. (2013). Empirical mode decompositionbased face recognition system. In Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, pages 445-450.
  8. Gross, R. (2005). Face Databases, chapter Handbook of Face Recognition, pages 301-327. Springer-Verlag.
  9. Han, M.-J., Lin, C.-H., and Song, K.-T. (2013). Robotic emotional expression generation based on mood transistion and personality model. IEEE Transactions on Cybernetics, 43(4):1290-1303.
  10. Huang, G. B., Mattat, M. A., Lee, H., and Learned-Miller, E. (2012). Learning to align from scratch. In Proceedings of the Conference on Advances in Neural Information Processing Systems, pages 764-772.
  11. Jain, A. K., Klare, B., and Park, U. (2012). Face matching and retrieval in Forensics applications. IEEE MultiMedia, 19(1):20.
  12. Lindner, C., Bromiley, P. A., Ionita, M. C., and Cootes, T. F. (2015). Robust and accurate shape model matching using random forest regression voting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9):1862-1874.
  13. Montagne, C., Kodewitz, A., Vigneron, V., Giraud, V., and Lelandais, S. (2013). 3D local binary pattern for PET image classification by SVM. In Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, pages 145-4150.
  14. Murphy-Chutorian, E. and Trivedi, M. M. (2009). Head pose estimation in computer vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(4):607-626.
  15. Nagi, J., Ahmed, S. K., and Nagi, F. (2008). A Matlabbased face recognition system using image processing and neural networks. In Proceedings of the International Colloquium on Signal Processing and its Applications, pages 83-88.
  16. Nakamura, K. and Takano, H. (2011). New Approaces to Characterization and Recognition of Faces, chapter Face discimination using the orientation and size recognition characteristics of the spreading associative neural network, pages 197-212. InTech.
  17. Olszewska, J. I. (2013). Multi-scale, multi-feature vector flow active contours for automatic multiple-face detection. In Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, pages 429-435.
  18. Rambach, J., Huber, M. F., Balthasar, M. R., and Zoubir, A. M. (2015). Collaborative multi-camera face recognition and tracking. In Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance, page 1.
  19. Tasli, H. E., den Uyl, T. M., Boujut, H., and Zaharia, T. (2015). Real-time facial character animation. In Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, page 1.
  20. Travieso-Gonzalez, C. M., del Pozo-Banos, M., and Alonso, J. B. (2011). Biometric Systems, Design and Applications, chapter Facial identification based on transform domains for images and videos, pages 293- 316. InTech.
  21. Turk, J. and Pentland, A. (1991). Face recognition using eigenfaces. In Proceedings of the IEEE International Conference on computer Vision and Pattern Recognition, pages 586-591.
  22. Viola, P. and Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2):137-154.
  23. Wood, R. and Olszewska, J. I. (2012). Lighting-variable AdaBoost based-on system for robust face detection. In Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, pages 494-497.
  24. Zhang, X. and Gao, Y. (2009). Face recognition across pose: A review. Pattern Recognition, 42(11):2876-2896.
Download


Paper Citation


in Harvard Style

Nash S., Rhodes M. and Olszewska J. (2016). iFR: Interactively Pose Corrected Face Recognition . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 106-112. DOI: 10.5220/0005857801060112


in Bibtex Style

@conference{biosignals16,
author={Simon Nash and Mark Rhodes and Joanna Isabelle Olszewska},
title={iFR: Interactively Pose Corrected Face Recognition},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016)},
year={2016},
pages={106-112},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005857801060112},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016)
TI - iFR: Interactively Pose Corrected Face Recognition
SN - 978-989-758-170-0
AU - Nash S.
AU - Rhodes M.
AU - Olszewska J.
PY - 2016
SP - 106
EP - 112
DO - 10.5220/0005857801060112