3D Building Reconstruction using Stereo Camera and Edge Detection

Konstantinos Bacharidis, Lemonia Ragia, Marios Politis, Konstantia Moirogiorgou, Michalis Zervakis

Abstract

Three dimensional geo-referenced data for buildings are very important for many applications like cadastre, urban and regional planning, environmental issues, archaeology, architecture, tourism and energy. The acquisition and update of existing databases is time consuming and involves specialized equipment and heavy post processing of the raw data. In this study we propose a system for urban area data based on stereo cameras for the reconstruction of the 3D space and subsequent matching with limited geodetic measurements. The proposed stereo system along with image processing algorithms for edge detection and characteristic point matching in the two cameras allows for the reconstruction of the 3D scene in camera coordinates. The matching with the available geodetic data allows for the mapping of the entire scene on the word coordinates and the reconstruction of real world distance and angle measurements.

References

  1. Doulamis, A., Doulamis, N., Ioannidis, C., Chrysouli, C., Grammalidis, N., Dimitropoulos, K., Potsiou, C., Stathopoulou, E., K., Ioannides, M., 2015. 5D Modelling: An Efficient Approach for Creating Spatiotemporal Predictive 3D Maps of Large-Scale Cultural Resources. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 1, pp. 61-68.
  2. Moore, R., Lopes, J., 1999. Paper templates. In TEMPLATE'06, 1st International Conference on Template Production. SciTePress.
  3. Smith, J., 1998. The book, The publishing company. London, 2nd edition.
  4. Petzold, F., Bartels, H., Donath, D., 2004. New techniques in building surveying. Proceedings of the ICCCBE-X, pp 156.
  5. Gülch, E., Müller, H., Labe, T. and Ragia, L., 1998. On the performance of semi-automatic building extraction. International Archives of Photogrammetry and Remote Sensing, 32, pp. 331-338.
  6. Fischer, A., Kolbe, T. H., Lang, F., Cremers, A. B., Förstner, W., Plümer, L. and Steinhage, V., 1998. Extracting buildings from aerial images using hierarchical aggregation in 2D and 3D. Computer Vision and Image Understanding, 72(2), pp. 185-203.
  7. Haala, N., Kada, M., 2010. An update on automatic 3D building reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6), pp. 570- 580.
  8. Suveg, I., and Vosselman, G., 2004. Reconstruction of 3D building models from aerial images and maps. ISPRS Journal of Photogrammetry and remote sensing, 58(3), pp. 202-224.
  9. Pasko, M. Gruber, M., 1996. Fussion of 2D GIS Data and aerial images for 3D building reconstruction. International Archives of Photogrammetry and Remote Sensing, vol. XXXI, Part B3, pp. 257-260.
  10. Ragia, L., Sarri, F., Mania, K., 2015. 3D Reconstruction and Visualization of Alternatives for Restoration of Historic Buildings - A new Approach. Proceedings of the 1st International Conference on Geographical Information Systems Theory, Applications and Management, Barcelona, Spain, 28-30 April, pp. 94-102.
  11. Brenner, C., 2005. Building reconstruction from images and laser scanning. International Journal of Applied Earth Observation and Geoinformation, 6(3), pp. 187-198.
  12. Verma, V., Kumar, R. and Hsu, S., 2006. 3D building detection and modeling from aerial LIDAR data. In Computer Vision and Pattern Recognition, IEEE Computer Society Conference on Vol. 2, pp. 2213- 2220.
  13. Elaksher, A. F., and Bethel, J. S., 2002. Reconstructing 3D buildings from LIDAR data. International Archives Of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(3/A), pp. 102-107.
  14. Zhang, Z., 2000. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence. vol. 22(11), pp. 1330-1334.
  15. Hartley, R., Zisserman, A., 2003. Multiple View Geometry in Computer Vision. Cambridge University Press.
  16. Hartley, R., 1997. In Defense of the Eight-Point Algorithm. IEEE® Transactions on Pattern Analysis and Machine Intelligence, v.19 n.6.
  17. Bouguet, J., 2013. Camera calibration toolbox for MATLAB.
  18. Karathanasis, J., D. Kalivas, D., and J. Vlontzos, J., 1996. Disparity estimation using block matching and dynamic programming. IEEE Conference Electronics, Circuits and Systems, pp.728 -731.
  19. Zhang, L., 2001. Hierarchical block-based disparity estimation using mean absolute difference and dynamic programming. Proceedings International Workshop Very Low Bit-Rate Video Coding (VLBV01), pp.114 -117.
  20. Rallim, J., 2011. PhD thesis, Fusion and regularization of image information in variational correspondence methods, Universidad de Granada. Departamento de Arquitectura y Tecnologa de Computadores, http://hera.ugr.es/tesisugr/20702371.pdf
  21. Lloyd, S. P. (1957). "Least square quantization in PCM". Bell Telephone Laboratories Paper.
  22. Lloyd., S. P. (1982). "Least squares quantization in PCM", IEEE Transactions on Information Theory 28 (2): 129- 137.
  23. MacKay, David (2003). "Chapter 20. An Example Inference Task: Clustering" Information Theory, Inference and Learning Algorithms. Cambridge University Press. pp. 284-292.
  24. Nobuyuki Otsu (1979). "A threshold selection method from gray-level histograms". IEEE Trans. Sys., Man., Cyber. 9 (1): 62-66.
  25. Duda, R. O. and P. E. Hart, "Use of the Hough Transformation to Detect Lines and Curves in Pictures," Comm. ACM, Vol. 15, pp. 11-15 (January, 1972)
Download


Paper Citation


in Harvard Style

Bacharidis K., Ragia L., Politis M., Moirogiorgou K. and Zervakis M. (2016). 3D Building Reconstruction using Stereo Camera and Edge Detection . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: RGB-SpectralImaging, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 715-724. DOI: 10.5220/0005852707150724


in Bibtex Style

@conference{rgb-spectralimaging16,
author={Konstantinos Bacharidis and Lemonia Ragia and Marios Politis and Konstantia Moirogiorgou and Michalis Zervakis},
title={3D Building Reconstruction using Stereo Camera and Edge Detection},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: RGB-SpectralImaging, (VISIGRAPP 2016)},
year={2016},
pages={715-724},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005852707150724},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: RGB-SpectralImaging, (VISIGRAPP 2016)
TI - 3D Building Reconstruction using Stereo Camera and Edge Detection
SN - 978-989-758-175-5
AU - Bacharidis K.
AU - Ragia L.
AU - Politis M.
AU - Moirogiorgou K.
AU - Zervakis M.
PY - 2016
SP - 715
EP - 724
DO - 10.5220/0005852707150724