A Novel Use of Hyperspectral Images for Human Brain Cancer Detection using in-Vivo Samples

Himar Fabelo, Samuel Ortega, Raùl Guerra, Gustavo Callicó, Adam Szolna, Juan F. Piñeiro, Miguel Tejedor, Sebastián López, Roberto Sarmiento

Abstract

Hyperspectral Imaging is an emerging technology for medical diagnosis issues due to the fact that it is a non-contact, non-ionizing and non-invasive sensing technique. The work presented in this paper tries to establish a novel way in the use of hyperspectral images to help neurosurgeons to accurately determine the tumour boundaries in the process of brain tumour resection, avoiding excessive extraction of healthy tissue and the accidental leaving of un-resected small tumour tissues. So as to do that, a hyperspectral database of in-vivo human brain samples has been created and a procedure to label the pixels diagnosed by the pathologists has been described. A total of 24646 samples from normal and tumour tissues from 13 different patients have been obtained. A pre-processing chain to homogenize the spectral signatures has been developed, obtaining 3 types of datasets (using different pre-processing chain) in order to determine which one provides the best classification results using a Random Forest classifier. The experimental results of this supervised classification algorithm to distinguish between normal and tumour tissues have achieved more than 99% of accuracy.

References

  1. G. Lu, B. Fei, 2014. Medical hyperspectral imaging: a review. Journal of biomedical optics, vol. 19, no. 1, pp. 010 901-010 901.
  2. H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, 2012. Hyperspectral imaging and quantitative analysis for prostate cancer detection. Journal of biomedical optics, vol. 17, no. 7, pp. 0 760 051-07 600 510.
  3. B. Fei, H. Akbari, L. V. Halig, 2012. Hyperspectral imaging and spectral-spatial classification for cancer detection. Biomedical Engineering and Informatics (BMEI), 5th International Conference on. IEEE, pp. 62-64.
  4. M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. DeNovo, & T. Vo-Dinh, 2006. Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection. Annals of Biomedical Engineering, 34(6), pp. 1061- 1068.
  5. B. D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne, P. G. de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss, T. Strudel, 2013. A clustered manycore processor architecture for embedded and accelerated applications. High Performance Extreme Computing Conference (HPEC), IEEE, pp.1-6.
  6. J. M. Bioucas-Dias and J. M. Nascimento, 2008. Hyperspectral subspace identification. Geoscience and Remote Sensing, IEEE Transactions on, vol. 46, no. 8, pp. 2435-2445.
  7. J. M. Nascimento and J. M. Bioucas-Dias, 2015. Hyperspectral noise estimation. https://github.com/jhausser/ParTI/blob/master/mvsa_d emo/estNoise.m, last accessed: November 2015.
  8. JiSoo Ham, Yangchi Chen, Melba M. Crawford, 2005. Investigation of the Random Forest Framework for Classification of Hyperspectral Data. IEEE Transactions On Geoscience and Remote Sensing, Vol. 43, No. 3, pp. 492 - 501.
  9. Breiman, L., 2001. Random forests. Machine learning, Vol. 45, No 1, pp. 5-32.
  10. Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., & Feuston, B. P., 2003. Random forest: a classification and regression tool for compound classification and QSAR modeling. Journal of chemical information and computer sciences, Vol. 43, No 6, pp. 1947-1958.
  11. R. Cutler, T. C. Edwards, K. H. Beard, A. Cutler, K. T. Hess, J. Gibson and J. J. Lawler, 2007. Random Forests for Classification in Ecology. Ecology, Ecological Society of America, Vol. 88, No. 11, pp. 2783-2792.
Download


Paper Citation


in Harvard Style

Fabelo H., Ortega S., Guerra R., Callicó G., Szolna A., Piñeiro J., Tejedor M., López S. and Sarmiento R. (2016). A Novel Use of Hyperspectral Images for Human Brain Cancer Detection using in-Vivo Samples . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: Smart-BIODEV, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 311-320. DOI: 10.5220/0005849803110320


in Bibtex Style

@conference{smart-biodev16,
author={Himar Fabelo and Samuel Ortega and Raùl Guerra and Gustavo Callicó and Adam Szolna and Juan F. Piñeiro and Miguel Tejedor and Sebastián López and Roberto Sarmiento},
title={A Novel Use of Hyperspectral Images for Human Brain Cancer Detection using in-Vivo Samples},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: Smart-BIODEV, (BIOSTEC 2016)},
year={2016},
pages={311-320},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005849803110320},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: Smart-BIODEV, (BIOSTEC 2016)
TI - A Novel Use of Hyperspectral Images for Human Brain Cancer Detection using in-Vivo Samples
SN - 978-989-758-170-0
AU - Fabelo H.
AU - Ortega S.
AU - Guerra R.
AU - Callicó G.
AU - Szolna A.
AU - Piñeiro J.
AU - Tejedor M.
AU - López S.
AU - Sarmiento R.
PY - 2016
SP - 311
EP - 320
DO - 10.5220/0005849803110320