
A Novel Use of Hyperspectral Images for Human Brain Cancer 
Detection using in-Vivo Samples 

Himar Fabelo1, Samuel Ortega1, Raúl Guerra1, Gustavo Callicó1, Adam Szolna2, Juan F. Piñeiro2, 
Miguel Tejedor1, Sebastián López1 and Roberto Sarmiento1 

1Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain 
2Department of Neurosurgery, University Hospital Doctor Negrín, Las Palmas de Gran Canaria, Spain 

Keywords: Brain Cancer Detection, Hyperspectral Imaging, Random Forest, Classification Algorithms. 

Abstract: Hyperspectral Imaging is an emerging technology for medical diagnosis issues due to the fact that it is a non-
contact, non-ionizing and non-invasive sensing technique. The work presented in this paper tries to establish 
a novel way in the use of hyperspectral images to help neurosurgeons to accurately determine the tumour 
boundaries in the process of brain tumour resection, avoiding excessive extraction of healthy tissue and the 
accidental leaving of un-resected small tumour tissues. So as to do that, a hyperspectral database of in-vivo 
human brain samples has been created and a procedure to label the pixels diagnosed by the pathologists has 
been described. A total of 24646 samples from normal and tumour tissues from 13 different patients have 
been obtained. A pre-processing chain to homogenize the spectral signatures has been developed, obtaining 
3 types of datasets (using different pre-processing chain) in order to determine which one provides the best 
classification results using a Random Forest classifier. The experimental results of this supervised 
classification algorithm to distinguish between normal and tumour tissues have achieved more than 99% of 
accuracy.  

1 INTRODUCTION 

Malignant brain tumours, with a global incidence 
around 3.5 per 100,000 people, are among the most 
lethal and challenging cancers for treatment. Surgical 
resection is one of the most important pillars in the 
treatment of these tumours, but due to their locations, 
sometimes arising from very eloquent areas of the 
brain, and their diffuse and infiltrating limits, the total 
excision is sometimes cumbersome or impossible to 
achieve. 

Modern Neurosurgery for these tumours relies on 
image-guided resection, but it needs expensive and/or 
invasive techniques, such as the Neuronavigation, 
intraoperatory Magnetic Resonance Imaging (MRI), 
injection of reactive for immunofluorescence, etc. 
The goal of this investigation is to apply an innovative 
and non-invasive technology tool for image-guided 
brain tumour resection: Hyperspectral imaging.  

This technology is a non-contact, non-ionizing 
and non-invasive sensing technique very suitable for 
medicine (Lu et al., 2014); (Akbari et al., 2012). It 
consists in collecting and processing information 

across the electromagnetic spectrum creating a 
hyperspectral data-cube with the values of the 
reflectance of the light captured in the scene for 
different frequencies. This kind of images increases 
the amount of information acquired in a scene 
compared with the conventional RGB image or a 
multispectral image (which has around ten bands), by 
capturing data in a large number of contiguous and 
narrow spectral bands over a wide spectral range. 
Using the information generated by hyperspectral 
imaging, it is possible to obtain a spectral signature of 
each pixel. This spectral signature allows 
differentiating the material or substance that is 
presented in the pixel. It is expected that tumours will 
be detected as changes in the spectral signatures 
compared with normal tissues (Fei et al., 2012); 
(Martin et al., 2006). 

The work presented in this paper has been 
developed within the HELICoiD (HypErspectraL 
Imaging Cancer Detection) project. HELICoiD is a 
European FET (Future Emerging Technologies) 
project that has the aim of discriminating between 
normal and tumour tissues in the surface of the human 
brain during neurosurgical operations in order to 
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provide the neurosurgeons with a real-time guide that 
can help in the adequate surgical resection. As a 
second goal, the project will try to obtain 
hyperspectral signatures from different tumours, so it 
might give clues to the neurosurgeon about the 
tumour histology. 

The results of this discrimination process will be 
shown to the neurosurgeons by using a false colour 
map where tumour and healthy tissues will be clearly 
differentiated. This colour map will help them to 
accurately determine the tumour boundaries in the 
process of brain tumour resection, avoiding excessive 
extraction of healthy tissue and the accidental leaving 
of small tumour tissues. 

2 MATERIALS AND METHODS 

This section provides an overview of the 
instrumentation and the methodology used to collect 
the in-vivo hyperspectral data of human brain 
samples. 

2.1 Hyperspectral Imaging 
Instrumentation 

In order to obtain the hyperspectral images of the in-
vivo human brain surface during the neurosurgical 
operations, the HELICoiD project has built a 
demonstrator capable of simultaneously obtaining 
two hyperspectral cubes. The two hyperspectral 
cameras selected are the Hyperspec® VNIR A-Series 
and the Hyperspec® NIR X-Series, manufactured by 
HeadWall Photonics, Massachusetts, USA. The 
VNIR (visible and near infrared) camera ranges 
between 400 nm to 1000 nm. The NIR (near infrared) 
camera ranges between 900 nm to 1700 nm.  

Figure 1 shows the main parts of the 
demonstrator. The most important elements of the 
system are located in the acquisition scanning 
platform. Table 1 presents the specifications of the 
two push-broom hyperspectral cameras. These 
cameras are fixed in a scanning unit composed by a 
stepper motor and a screw with a maximum path of 
230 mm and a step resolution of 6.17 µm. 
Furthermore, a cold light emitter is located together 
with the cameras. The cold light emitter is connected 
to a 150 W Quartz Tungsten-Halogen system (QTH) 
(Figure 2.c), which offers broadband emission in the 
VIS (visible) and NIR spectral ranges (400 nm to 
2200 nm), through an optical fibre. This system 
isolates the high temperatures produced by the 
halogen lamp, avoiding a direct emission to the brain 
surface.  

Data pre-processing system is composed by a 
high performance computer which manages the entire 
system, especially the acquisition scanning platform 
and the interaction with the user through the graphical 
user interface (GUI). 

 

Figure 1: HELICoiD demonstrator main parts. 

Finally, the processing sub-system platform has 
the goal of performing the hyperspectral 
classification in order to achieve the results in real-
time. The platform selected for this issue is the Kalray 
many-core processor that features MIMD (Multiple 
Instruction Multiple Data) architecture (B. D. de 
Dinechin et al., 2013). This platform is focused on 
intensive computing, low power and embedded 
applications. 

Table 1: Camera Specifications. 

 
Hyperspec® 

VNIR 
Hyperspec® 

NIR 

Spectral range (nm) 400 – 1000 900 – 1700 

Spectral resolution (nm) 2 – 3 5 

Slit (μm) 25 25 

Spatial bands 1004 320 

Spectral bands 826 172 

Frame Height (FOV) (mm) 129.21 153.6 

Pixel Dimensions (IFOV) 
(mm) 

0.1287 0.4800 

Max Pixels per Frame 1004 320 

Max Frames per Capture 1825 489 

Dispersion per pixel (nm) 0.74 4.8 

Detector array Silicon CCD InGaAs 

Frame rate (fps) 90 100 
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Figure 2.b shows the HELICoiD demonstrator 
inside the pre-operative area at the University 
Hospital Doctor Negrín in Las Palmas de Gran 
Canaria, Spain. Figure 2.a presents the acquisition 
platform where the cameras and the cold light 
element are located. On the left side of the platform, 
the VNIR camera is located, and on the right side the 
NIR camera is placed. In the middle of the two 
cameras, the cold light emitter is located. These three 
elements are correctly aligned in order to obtain the 
images properly illuminated. Figure 2.d displays the 
stepper motor controller, which is in charge of 
managing the scanning platform shift. 

(a) 

 
(b) 

 
(c) 

(d) 

Figure 2: (a) Acquisition scanning platform, (b) complete 
HELICoiD demonstrator, (c) Quartz Tungsten-Halogen 
system and (d) stepper motor controller. 

2.2 Hyperspectral Image Dataset 

Using the HELICoiD demonstrator, an in-vivo 
human brain hyperspectral image database has been 
created. The hyperspectral cubes have been obtained 
from 13 different patients at the University Hospital 
Doctor Negrín. The disease of the tissues captured 

during this study involves both primary brain tumours 
and secondary tumours (metastasis). All primary 
tumours captured have been diagnosed as grade IV 
glioblastoma. For secondary tumours two different 
types of metastasis, lung and renal, have been 
collected.  

From this database, a dataset formed by normal 
brain tissue and tumour tissue (primary and 
secondary) of hyperspectral samples have been 
collected and labelled. The work presented in this 
paper is only focused in the VNIR hyperspectral 
cubes as they have provided better results. Table 2 
shows the number of the labelled in-vivo human brain 
samples available from the VNIR hyperspectral 
cubes.  

Table 2: HELICoiD Labelled Spectral Signature Data Base. 

Tissue Type Patients # Samples 
Normal 9 12604 

Tumour 
Primary 8 10059 

Secondary 4 1983 

 
In order to obtain the samples correctly labelled, 

the four steps flowchart presented in Figure 3 has 
been followed. First, when the neurosurgeons have 
the brain surface exposed, they place two sterilised 
rubber ring markers over it. One marker is placed 
over the zone where clearly the tumour lesion is 
located. The other marker is placed over an area far 
from the tumour lesion, where the neurosurgeon can 
be quite confident that the brain tissue is healthy. 
After that, the operator of the HELICoiD 
demonstrator captures the hyperspectral image of this 
exposed brain surface. 

 

Figure 3: Data capture and labelling process. 

So as to identify the location of the markers over 
the brain, the neuronavigator pointer is used. Figure 4 
illustrates the use of the neuronavigator to identify the 
position of the markers in a MRI. 

Next, neurosurgeons remove the tissue inside the 
tumour marker. This tissue is sent to the pathologists, 
which are the experts who can determine the real 
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diagnosis of the tissue inside the marker. If the brain 
tissue is tumour, pathologists specify the grade and 
the type of the tumour.  

 
(a) 

 
(b) 

Figure 4: (a) Neuronavigator pointer over the tumour 
marker located on the brain surface exposed and (b), 
neuronavigator screen capture with the coordinates of the 
tumour marker in a MRI. 

Finally, with this information, the pixels inside the 
markers are cropped manually, avoiding pixels which 
could have specular reflections produced by the non-
uniformity of the brain surface. These selected pixels 
are labelled and stored with the information provided 
by the pathologists. Labelled pixels will be used as 
inputs in a supervised classification algorithm 
scheme.  

Figure 5 presents the most representative bands of 
the VNIR hyperspectral image of the patient 12’s 
brain surface captured by the demonstrator. 

3 CLASSIFICATION SYSTEM 

For performing a spectral classification using the 
hyperspectral images captured, a classification 
system based on a Random Forest (RF) classifier has 
been defined. Figure 6 shows an overview of this 
classification system.  

The first stage of the proposed classification 
system is the acquisition step, where the labelled 
dataset of the tumour and normal samples are 
collected. The procedure followed to collect these 
data has been previously described in section 2.2. 

After the acquisition stage, a pre-processing chain 
is applied to the labelled dataset. In this pre-
processing stage an image calibration is done in order 
to address the problem of the spectral non-uniformity 
of the illumination device and the dark current. 
Furthermore, a set of steps with the goal of removing 
the noise of the spectral signatures and to reduce the 
number of bands of the samples without lose the main 
spectral information are applied. 

 Finally, so as to homogenize the spectral 
signatures in terms of reflectance level, a pixel bright 
correction step and a normalization step are 
performed.  

In the classification stage, the labelled dataset is 
partitioned into two different datasets. Training 
dataset is used to generate the classifier model while 
test dataset is used to validate this model, obtaining 
the results of the classification. Sensitivity, specificity 
and overall accuracy are the evaluation metrics 
chosen in order to know the goodness of the classifier 
model. These evaluation metrics will be described 
later. 

 
Figure 5: Most representative bands of the VNIR hyperspectral image (400 nm to 1000 nm) from patient 12. 
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Figure 6: Classification system overview. 

3.1 Data Pre-processing 

A pre-processing chain composed by three main steps 
(image calibration, spectral noise and band reduction 
and data normalization) has been developed in order 
to homogenize the spectral signatures of the labelled 
samples obtained from the in-vivo hyperspectral data-
cubes. 

3.1.1 Image Calibration 

The first step in the pre-processing chain is the image 
calibration, where the significant signal variations 
caused by the non-uniform illumination over the 
surface of the captured scene are corrected. The 
acquired raw image is calibrated using the white and 
dark reference images.  

White and dark reference images are acquired by 
the demonstrator inside the operating theatre under 
the same illumination conditions used to acquire the 
in-vivo brain surface images. The white reference 
image is obtained from a standard white reference tile 
and the dark reference image is obtained by keeping 
the camera shutter closed. The hyperspectral 
calibrated image is calculated using the equation (1), 
where CI is the calibrated image, RI is the raw image 
and WR and DR are the white and dark reference 
images respectively. Figure 7 shows the spectral 
signature of a grade IV glioblastoma tumour tissue 
before the calibration step (raw pixel) and Figure 8 
after the applied calibration. ܫܥ = 100 ∙ ܫܴ − ܴܹܴܦ −  (1) ܴܦ

3.1.2 Noise and Dimensionality Reduction 

The second step in the pre-processing chain is to 
apply a series of filters in order to remove the noise 
existing in the spectral signatures, mainly due to the 
CCD sensor of the VNIR camera.  

First of all, the noise filter which conforms the 
first step of the HySIME algorithm is applied, 

reducing a large amount of noise from the spectral 
signatures. This function, which is named 
Hyperspectral Noise Estimation, infers the noise in a 
hyperspectral data set, by assuming that the 
reflectance at a given band is well modelled by a 
linear regression on the remaining bands (Bioucas-
Dias and Nascimento, 2008); (Nascimento and 
Bioucas-Dias, 2015). Figure 9 shows the same 
spectral signature after having applied this noise 
filter.  

 

Figure 7: Raw spectral signature of a grade IV glioblastoma 
tumour tissue.  

 

Figure 8: Calibrated spectral signature of a grade IV 
glioblastoma tumour tissue. 
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After this step, the bands from 0 to 50 and the 
bands from 750 to 826 are removed since these bands 
contain too much noise due to the limited 
performance of the CCD sensor, the grate and the 
light scattering in the extreme bands. This fact can be 
seen in Figure 9. Additionally, this step reduces the 
number of bands in the spectral signatures from 826 
to 700 bands. 

Afterwards, a smoothing technique is 
independently applied to each pixel of the image. This 
technique modified each pixel ݕ௞ of the spectral 
signature of the pixel under analysis, ܻ ,ଵݕ)= ,ଶݕ … ,  ேಳ), where k is the selected pixel and NBݕ
is the original number of bands. The new value of the 
“smoothed point” (ݕ௞)௦ is the average of the values 
corresponding to predefined number of its 
surrounding points, as shown in equation (2), where ݊ is number of bands to be combined. (ݕ௞)௦ = ෍ ௞ା௜/(2ݕ ∙ ݊ + 1)௜ୀ௡

௜ୀି௡  (2)

Due to the extremely high spectral resolution of 
the images, it has been observed that consecutive 
bands are correlated, providing redundant 
information. In order to avoid this redundancy and 
speed up the hyperspectral analysis of the data set, a 
few bands have been removed. Moreover, it is not 
needed to perform the smooth filter for those bands 
that are going to be removed, which eases the filtering 
process in terms of computational burden. In 
particular 129 spectral bands, from the 700 spectral 
bands previously processed, have been totally 
filtered, uniformly covering the spectral range from 
400 to 1000 nm as shown in Figure 10.  

3.1.3 Data Normalization 

Due to the surgery procedure, the pixels are captured 
at different height, and hence, at different radiation 
intensity. This fact typically causes that pixels 
labelled as tumour and normal tissue have very 
different radiation intensities. If these pixels are 
introduced without any pre-processing in a classifier, 
the pixels could be classified according to its 
brightness, without really taking into account their 
spectral signatures. In order to avoid this fact, a pre-
processing step which normalizes the brightness of 
the pixels in the image needs to be included. This 
process calculates the brightness of each pixel of the 
hyperspectral image and divides each pixel by its 
brightness, as shown in equation (3). In this equation ஻ܻ஼ is the pixel with the brightness correction, ܻ  is the 
pixel to be corrected and ݕ௜ is the i-th component of 
this pixel. With this pre-processing step, the 
brightness of each pixel is homogenized without 

modifying its spectral signature. Figure 10 illustrates 
the final spectral signature with the full pre-
processing chain applied. 

஻ܻ஼ = ܻට∑ ௜ଶଵଶଽ௜ୀଵݕ  (3)

Figure 11 presents the VNIR RGB image of the 
patient 12, with the tumour area remarked (surgeon 
prior evaluation), and the most representative features 
of the final pre-processed data-cube. As it can be 
appreciated, in feature 45 veins and tumour tissue 
have a low brightness regarding to the normal tissue. 
However, in feature 55 and 65, veins and normal 
tissues have approximately the same brightness level 
while the area where tumour is located exhibit lower 
brightness. Feature 80 allows seeing veins in high 
brightness conditions while tumour and normal 
tissues have the same brightness. Finally, the feature 
125 is relevant because where the tumour area is 
located there is a high level of brightness. This fact 
suggests that this pre-processed chain additionally 
can obtain high level of contrast to distinguish 
between veins, normal tissues and tumour tissues. 

 

Figure 9: Spectral signature with the HySIME filter applied 
to a grade IV glioblastoma tumour tissue. 

 
Figure 10: Spectral signature with the noise and band 
reduction step and the normalization applied to a grade IV 
glioblastoma tumour tissue. 
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Figure 11: Most representative features of the final pre-
processed image from patient 12. 

3.2 Classification Algorithm 

In this research work a supervised learning algorithm 
has been employed, where the input features of the 
classifier consist in the spectral signatures extracted 
from brain tissue. The data mining algorithm chosen 
for classifying data is Random Forest (RF). This 
algorithm has been already used in the classification 
of hyperspectral data (Ham et al., 2005). Random 
Forest is an ensemble of Decision Trees (DTs), where 
each tree has been generated with the same training 
set, but is growing using different random vectors 
(Breiman, 2001). A single Decision Tree handles 
high-dimensional data well, has the ability to ignore 
irrelevant features and provides an easy model 
interpretation. However, DT usually has relatively 
low prediction accuracy. Due to the advantages 
provided by DT, many efforts to improve its 
prediction accuracy has been proposed. It has been 
discovered that one of the best ways to improve the 
performance of Decision Tree-based algorithms is 
using ensembles of DT, like Random Forest classifier 
(Svetnik et al., 2003). The output of RF classifier is 
calculated as the most popular class voted by the 
trees. 

Advantages of RF compared to other statistical 
classifiers include very high classification accuracy; 
a novel method of determining variable importance; 
ability to model complex interactions among 
predictor variables; flexibility to perform several 
types of statistical data analysis, including regression, 
classification, survival analysis, and unsupervised 
learning; and an algorithm for imputing missing 
values (Cutler et al., 2007). 

3.3 Experimental Setup 

The experimental setup chosen for this study merges 
all available hyperspectral labelled data (from 13 
different patients) in a single dataset. The dataset 

employed in this research work has been created by 
joining each single operation hyperspectral labelled 
data, even if a unique class is given for a certain 
operation. As the training and testing stages for 
classification have been performed using data from 
all the operations, the inter-patient variability of the 
data will be taken into account.  

The labelling of data has been performed using 
two different abstraction levels of the diagnosis of the 
tissue. In the first level, tissues have been grouped in 
'Normal' tissues and 'Tumour' tissues, and the 
classification using this labelling scheme has been 
named 'Tag Level 1'. For the second labelling scheme, 
'Tumour' tissues have been divided in 'Primary' and 
'Secondary' tissues, attending to the diagnosis 
provided by pathologists. This labelling scheme has 
been named 'Tag Level 2'. The summary of the 
dataset is given in Table 3. 

In order to estimate the classifier performance, 
and for obtaining the optimal configuration of the 
selected algorithm, a three-way cross validation has 
been employed. Three-way cross-validation consists 
in two different stages for splitting the available 
dataset: in the first stage, k-fold cross-validation is 
used in order to get training and testing subsets. Test 
data will be used to estimate the classifier 
performance, and the training data are partitioned 
again into training data and validation data (Figure 
12). The training subset of the second cross-
validation stage is used to create the model of the 
classifier, and the validation data are used to evaluate 
the performance of the classifier. With the second 
stage partition, the model fitting will be 
accomplished, and the parameters of the classifier 
will be modified in order to obtain the optimal 
configuration of the algorithm. The test set obtained 
in the first dataset split, is used to perform the 
performance evaluation of the algorithm by using 
unknown data for the classifier. The k value selected 
for both cross-validations is 10, which is a typical 
value used in data mining 

 
Figure 12: Three-way cross-validation experimental setup 
overview. 

A Novel Use of Hyperspectral Images for Human Brain Cancer Detection using in-Vivo Samples

317



Table 3: HELICoiD Labelled Dataset with two 
classification tag levels. 

#Operation 
Diagnosis 

#Samples 
Tag Level 1 Tag Level 2 

1 
Normal 408 

Tumour Secondary 578 

4 
Normal 1939 

Tumour Secondary 522 

5 
Normal 832 

Tumour Secondary 493 

6 Normal 806 

7 Normal 768 

8 
Normal 1484 

Tumour Primary 3259 

10 Tumour Primary 425 

12 
Normal 806 

Tumour Primary 1424 

13 Tumour Secondary 390 

14 Tumour Primary 1139 

15 
Normal 648 

Tumour Primary 800 

16 
Normal 4913 

Tumour Primary 1987 

17 Tumour Primary 1025 

Total 24646 

3.4 Evaluation Metrics 

The goodness of the classifier has been measured 
using sensitivity, specificity and overall accuracy 
metrics. Sensitivity measures the test ability to 
identify a condition correctly. It is computed as 
follows: ܵ݁݊ݕݐ݅ݒ݅ݐ݅ݏ = ܶܲܶܲ + (5) ܰܨ

where TP is the number of true positives and FN is 
the number of false negatives in a population. 

Specificity measures the test ability to exclude a 
condition correctly. It is expressed as follows: ܵݕݐ݂݅ܿ݅݅ܿ݁݌ = ܶܰܶܰ + (6) ܲܨ

where TN is the number of true negatives and FP is 
the number of false positives in a population. 

Finally, the equation (7) shows the accuracy 
metric that represents the percentage of total correctly 
classified samples in a population: ݕܿܽݎݑܿܿܣ = ܶܲ + ܶܰܶܲ + ܲܨ + ܶܰ + (7) ܰܨ

4 EXPERIMENTAL RESULTS 

The hyperspectral classification experiments have 
been performed using the three different pre-
processed data previously described. The calibrated 
data are the labelled samples with only the white and 
dark calibration applied. HySIME filtered data are the 
previous calibrated samples with the HySIME filter 
applied over them. The last set of data has the 
complete pre-processed chain applied, this set of data 
is called pre-processed samples. 

As it was commented previously, two different 
levels of diagnosis detail have been evaluated.   

4.1 Tumour Vs Normal: Tag Level 1 

In this section will be presented the results obtained 
using the Random Forest classification system over 
the three different set of data taking into account the 
first tag level (normal vs tumour tissues).  

The results of the classification in this case study 
shows that an automatic discrimination between 
'Normal' tissue and 'Tumour' tissue is possible using 
the hyperspectral signature of the tissues. Sensitivity 
and specificity lie in the same range, which means 
that the algorithm is capable to identify both kinds of 
tissues.  

Although the classification results provide 
accurate discrimination rates in terms of accuracy, 
specificity and sensitivity, varying the pre-processing 
stage results in an improvement of the classification. 
From data shown on Table 4, it can be seen that the 
accuracy improves from around 93%, when the pre-
processing chain consists only of the calibration of 
the hyperspectral image, to 99% when using the 
whole pre-processing chain presented in Figure 6. 
Figure 13 presents these results in a bar chart.  

 

Figure 13: Comparison between the classification results of 
the three data sets at tag-detail level 1. 
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Table 4: Comparison between the classification results of 
the three data sets at the tag level 1. 

 Calibrated HySIME Filtered Pre-processed
Sensitivity (%) 94.05 95.67 99.68 
Specificity (%) 93.24 96.49 99.67 
Accuracy (%) 93.67 96.06 99.68 

 
This trend is kept for the rest of the evaluation 

metrics: specificity improves from 93% to 99% and 
sensitivity improves from 94% to 99%, when the full 
pre-processing chain is used, instead of performing 
only the calibration. 

4.2 Normal Vs Primary Vs Secondary: 
Tag Level 2 

The same data have been classified with a different 
tag scheme, where 'Tumour' tissues have been divided 
into 'Primary' and 'Secondary' tumour tissue labels. 
Figure 14 illustrates the accuracy results between the 
different pre-processed datasets and Table 5 to Table 
7 show the classification results in terms of sensitivity 
and specificity for each class. These data have been 
obtained by calculating the confusion matrix of each 
dataset that can be seen in Table 8. The error 
estimation of this classification shows that the 
algorithm can keep a good performance on 
discriminating between normal and tumour tissue, 
even using a more complex labelling scheme. The 
sensitivity and specificity values show also high 
values, which indicates that all classes have been 
properly classified. Results show again that the used 
pre-process chain improves the results of the 
classification. 

 
Figure 14: Accuracy comparison between the classification 
results of the three data sets in tag level 2. 

Table 5: Classification results of the calibrated dataset in 
tag level 2.  

 Sensitivity (%) 
Normal Primary Secondary 

S
p

ec
if

ic
it

y 
(%

) 

Normal - 94.67 99.67 

Primary 94.63 - 94.34 

Secondary 97.64 89.21 - 

Table 6: Classification results of the HySIME filtered 
dataset in tag level 2.  

 Sensitivity (%) 
Normal Primary Secondary 

S
p

ec
if

ic
it

y 
(%

) 

Normal - 96.07 99.51 

Primary 95.49 - 96.4 

Secondary 99.45 91.88 - 

Table 7: Classification results of the pre-processed dataset 
in tag level 2.  

 Sensitivity (%) 
Normal Primary Secondary 

S
p

ec
if

ic
it

y 
(%

) 

Normal - 99.92 100.00 

Primary 99.31 - 99.90 

Secondary 100.00 100.00 - 

5 CONCLUSIONS 

In this paper, it has been described a hyperspectral 
acquisition system used to create a hyperspectral 
database of human brain tissues previously diagnosed 
as tumour or normal. In each surgical procedure, a 
few rubber ring markers have been placed by the 
neurosurgeons to get assessed diagnosis from 
pathology. Some of these markers were located in 
areas of brain where neurosurgeons were quite sure 
that the tissues were healthy, and the other markers 
were placed where the resection was going to be 
performed. A biopsy from the rejected tissue was sent 
to pathology, providing assessed diagnosis of the 
tissues inside the marker. These samples were used as 
the ground truth for classification.  

Table 8: Confusion matrix of the three types of datasets in tag level 2. 

  Predicted Results 

  Calibrated HySIME Filtered Per-Processed 

  Normal Primary Secondary Normal Primary Secondary Normal Primary Secondary

G
ol

d
 

S
ta

n
d

ar
d

 

Normal 1225 52 3 1223 43 1 1249 7 0 

Primary 69 917 15 50 910 16 1 1013 0 

Secondary 4 55 124 6 34 181 0 1 193 

91,96% 93,91% 99,63%
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Taking into account the diagnostic information 
provided by pathologists, the pixels inside markers 
were extracted from the hypercubes and labelled 
according to the diagnosis. Due to the complexity of 
the diagnostic information, a labelling scheme 
consisting in two abstraction levels of disease details 
had been proposed. 

The classification results shown in section 4 show 
that it is possible to obtain an accurate and automatic 
discrimination between different types of tissues 
using the labelling schemes proposed. Although the 
three proposed pre-processing chains provided 
accurate classification results (accuracy higher than 
89% for all the classifications), the more complex one 
provided the best classification results in all the 
experiments exposed in this paper.  

In the near future, some additional research is 
foreseeable to be done. Firstly, the complexity of the 
diagnosis can be further explored. For instance, 
primary tumours could be classified according to its 
Grade, and Secondary tumours (metastasis) could be 
differentiated attending to their origin (breast, lung, 
etc.). The next step will be to define a more complex 
labelling scheme to better classify the type of tumour. 
Secondly, we are working in the design a case study 
where the automatic diagnostic of a new patient could 
be computed by using a model that had been created 
using the hyperspectral data from previous (and in 
consequence different) patients. Thirdly, it could be 
interesting to test the performance of other different 
machine learning algorithms, like the support vector 
machines (SVM), the neural networks (NN), etc. 
Finally, due to the large experience that the research 
group has in hardware implementations, we are 
considering the implementation of the pre-processing 
and classification algorithms in some hardware 
platform (FPGA, GPU, ASICs, many cores, etc.) to 
accelerate its execution. 
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