
TASSA: A Testing as a Service Framework for Web Service
Compositions

Dessislava Petrova-Antonova1, Sylvia Ilieva1,2 and Denitsa Manova3
1Depatment of Software Engineering, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria

2Institute of Information and communication technologies, BAS, Sofia, Bulgaria
3Rila Solutions, Sofia, Bulgaria

Keywords: Cloud Computing, Service-Oriented Architecture, Testing-as-a-Service, Web Services, Web Service
Compositions, WS-BPEL.

Abstract: Testing-as-a-Service (TaaS) is a new quality assurance model addressing the challenges of software testing
in the cloud. The missing access to the hardware or different software configurations as well as the difficulties
of building a test environment are examples for common problems in the testing process. This paper addresses
such problems by proposing a TaaS-enabled framework offering testing services on as-needed basis. The
framework, called Testing as a Service Software Architecture (TASSA), supports testing of web service
compositions described with Business Process Execution Language for Web Services (WS-BPEL). Its core
functionality includes fault injection and dependencies isolation of the application under test. It is
implemented as web services deployed on cloud infrastructure. In addition, the TASSA Graphical User
Interface (GUI) for test case design and execution is implemented as a plugin for Eclipse IDE. It could be
accessed from a local computer or used for building a cloud test lab on a virtual machine. Sample business
process from wine industry is used for proving the feasibility of TASSA framework.

1 INTRODUCTION

Nowadays, the cloud computing is one of the hot
topics in software development. It provides a new
way for building software applications known also as
Software-as-a-Service (SaaS). The challenges and
business opportunities that cloud computing brings
affect all different activities of software engineering,
including software testing. A new on-demand testing
model, called Testing-as-a-Service (TaaS) became
available.

In general, the software testing faces various
difficulties due to lack of time and testing experience,
limited resources and unclearly defined requirements
and testing criteria. But, the most significant
difficulties could appear before the beginning of the
testing itself. The missing access to the hardware or
different software configurations as well as building
a test environment are examples for common
problems surrounding the testing process of SaaS.
However, with the emergence of cloud computing,
the software testing gain new benefits represented by
the TaaS:

 Access to virtual environments providing a
variety software and hardware configurations;

 Possibility for deployment and/or usage
different testing environments;

 Availability of on-demand testing services
allowing testers to provision raw cloud
resources at run time, when and where needed;

 Availability of multi-tenant testing services
following given QoS requirements and Service
Level Agreements (SLAs);

 Reduced cost of testing due to pay-per-use
basis of testing services.

Following the current trends in software testing
provided by TaaS, this paper proposes a framework,
named TASSA, for testing web service compositions,
called Testing as a Service Software Architecture
(TASSA). The last three benefits are available in
TASSA framework by implementation of its core
functionality as cloud-based testing services.

Testing web service compositions is a challenging
task, since their implementation follows the Service-
Oriented Architecture (SOA). Although many
research efforts are focused on SOA testing in the past
few years, the following difficulties still remain

Petrova-Antonova, D., Ilieva, S. and Manova, D.
TASSA: A Testing as a Service Framework for Web Service Compositions.
DOI: 10.5220/0005844400330042
In Proceedings of the International Workshop on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn (AMARETTO 2016), pages 33-42
ISBN: 978-989-758-166-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

33

unsolved:
 Distributed and heterogeneous nature of SOA

applications. Implementation of SOA
applications requires composition of web
services that are built and deployed on
heterogeneous platforms. These web services
are outside organization boundaries and are
hard to be tested since they are owned by
different stakeholders. Furthermore, they could
be unavailable for a given period of time or in
the worst case could be undeployed by their
provider. This in turn complicates the testing
due to the necessity of emulation of the missing
or unavailable web services. TASSA framework
addresses it through support of dependency
isolation and fault injection of software under
test from external web services.

 Lack of knowledge about testing artefacts.
When testing traditional applications the testers
rely heavily on their GUIs. However, SOA
testers miss such convenience since the web
services expose programming interfaces
defined with Web Service Description
Language (WSDL). In addition, they do not
have access to the design documents and source
code of the integrated software components,
which often decreases the testing efficiency.
Again, dependency isolation functionality of
TASSA framework addresses this challenge.

 Difficulties to reproduce testing environments.
Typically, SOA solutions integrate products
from different vendors following complex
technical specifications and standards. That is
why, it is difficult to test all software
configurations and varying load on SOA
infrastructure and underlying network. Thus,
high technical competence is required from the
testers and more attention on performance,
robustness and security testing is needed. The
Graphical User Interface (GUI) of TASSA
framework is fully integrated with Eclipse
Integrated Development Environment (IDE).
Thus, end-to-end testing environment for web
service compositions provided.

 Lack of full automation. Although various
approaches and tools for web service
composition testing have been proposed, most
of them provide partial solutions covering
single testing activities such as test path
analysis, test case generation, web service
emulation, fault injection, etc. However, in
order to perform efficient testing, it is
important to integrate all testing activities in a
common testing environment, which is the

TASSA framework case.
TASSA framework provides end-to-end testing

environment for web service compositions, described
with Business Process Execution Language for Web
Services (WS-BPEL) that takes the benefits of the
TaaS model. It consists of two main components:
 GUI for test case specification and execution

that is available as a plugin for Eclipse IDE;
 TaaS functionality for fault injection and

dependencies isolation that is available as web
services deployed on a cloud infrastructure.

The rest of the papers is organized as follows.
Section 2 outlines the related work. Section 3 is
devoted to the architecture of TASSA framework.
Section 4 presents the implementation of the TaaS
functionality for fault injection and dependencies
isolation. Section 5 describes a case study of testing
sample business process with TASSA framework as
a proof of concept. Section 6 concludes the paper and
gives directions for future work.

2 RELATED WORK

The related work, presented in this section,
approaches and frameworks following TaaS concept.

An extensive overview of recently proposed
approaches and tools for functional, structural and
security testing of web services is presented in
(Bartolini et al., 2012). The authors of (Bucchiarone
et al., 2007) survey the current solutions for testing
web service compositions. The most work in these
surveys are focused on web service signatures,
namely WSDL descriptions (Bartolini et al., 2008;
Dong, 2009; Noikajana and Suwannasart, 2009; Bai
et al., 2005, Lopez et al., 20013; Masood et al.,
20013). However, WSDL interface does not provide
a semantic information for web services and a
behavioral description of them, which is important
when testing web service orchestrations. In contrast,
TASSA framework is focused on testing of web
service compositions, described with WS-BPEL.
This approach of SOA testing is adopted by several
works. In order to perform control and data flow
testing, the authors of (García-Fanjul et al., 2006)
propose the use of model checkers for test cases
generation from BPEL descriptions. Other
approaches (Hou et al., 2009; Yuan et al., 2006;
Karam et al., 2007; Li et al., 2008) focus on analysis
of test paths derived from graph models representing
the composition specification. In this direction, Yuan
et al. (2006) propose a graph-search based approach
transforming the BPEL into an extension of a control
flow graph and generating test data for each path by

AMARETTO 2016 - International Workshop on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

34

using constraint solvers. Other approaches, e.g. (Cao
et al., 2009), propose online testing algorithms for
web services composition using BPEL.

Currently, the TaaS benefits focusses the attention
of both industry and academic communities on
building cloud-based solutions for software testing.
Recently, а considerable number of definitions for
TaaS were proposed. Each of them emphasizes on
different TaaS perspectives. According to (Candea et
al, 2010) TaaS implies two ideas: first, providing
software testing as a web service that is competitive
and easily accessible, and second, performing
automated testing using the huge, elastic resources of
cloud infrastructure. TaaS is viewed as a cloud-based
service that automates the software testing in
(Parveen and Tilley, 2010). The migration of software
testing to the cloud is presented from the following
points of view – the characteristics of the software
under test and the type of testing performed on the
software. As pointed in (Yu et al., 2010) TaaS is “a
new model to provide testing capabilities to end
users”. A more thorough definition of TaaS is
provided in (Gao et al., 2013). On one hand, TaaS is
explained as a service model for software testing
available on-demand. On the other hand, TaaS is
described as a new business model for software
testing providing cost-sharing and cost-reduction due
to its pay-as-you-test abilities.

A framework of TaaS as a new model to improve
the efficiency of software testing is proposed in (Yu
et al., 2010, 2009). It consists of four layers: Test
Service Tenant and Contribution layer, Testing
Service Bus layer, Testing Service Composite layer,
and Testing Service Pool layer. The idea of the
framework is similar to the one of Universal
Description Discovery and Integration (UDDI)
registry. Its main functionality includes registering,
matching, reasoning, classifying and scheduling of
testing services in order to provide TaaS-based
service compositions to the end users. The authors of
(Zhu and Zhang, 2012) apply similar approach by
proposing a framework for collaborative testing of
web services. The framework uses various test
services that interoperate to complete the testing
tasks. They are registered, discovered, and invoked at
runtime in order to achieve testing on-the-fly with a
high degree of automation. Prescriptions for
implementation of TaaS strategy by the software
organizations are introduced in (Sathe and Kulkarni,
2013).

Although there are a number of recently published
research papers addressing TaaS issues, challenges,
and needs, there is a very few published papers
focusing on web service composition testing. In (Yan

et al., 2012) requirements for web service load testing
are identified and a WS-TaaS platform for such type
of testing is pro-posed. The platform is based on an
existing Cloud PaaS platform, called Ser-vice4All.
Unfortunately, it does not support testing of web
service compositions and its functionality is limited
to that provided by the Apache JMeter (2015). A
cloud platform for testing Service-Oriented
Architecture (SOA) orchestrations, called MIDAS, is
proposed in (Herbold et al., 2015). The MIDAS
platform adopts SOA paradigm, so all its
functionality is exposed as services deployed on a
cloud infrastructure. The supported types of testing
are functional testing, security testing and usage-
based testing. A limitation of the MIDAS platform is
that it allows testing of service interactions with
SOAP messages. The test methods require
specification of input models using UML-based
language, called MIDAS DSL. This is a drawback of
the MIDAS platform, since usually the SOA
orchestrations are described with languages such as
WS-BPEL, Business Process Modelling Notation
(BPMN) and Windows Workflow Foundation
(WWF).

There are several cloud-based commercial
platforms on the market providing TaaS. SOASTA
CloudTest (2015) and IBM Rational Performance
Tester (2015) are solutions for load and performance
testing. Sauce Labs is a platform for testing mobile
and web applications (2015). It allows testers to
create test manually or using Appium, Selenium or
JavaScript unit. Oracle provides a platform covering
the testing process end-to-end (2015). It automates
the provisioning of so called test labs, which includes
the application under test and the software tools for
functional and load testing. The most powerful
solution for cloud testing is provided by Parasoft
(2015). Their testing platform is designed to support
functional, performance, load and security testing of
all the protocols and technologies that make cloud-
based applications possible (HTTP/S, JMS, MQ,
ESB, PoX, JDBC, RMI, Tibco, SMTP, .NET WCF,
SOAP/WSDL, REST/WADL, etc.). In addition, the
behavior of dependent applications (third-party
services, mainframes, database, etc.) can be emulated
using Parasoft’s service virtualization.

The commercial cloud-based solutions presented
above are focused on building test labs mainly by
installing the currently provided testing tools on cloud
infrastructure. Most of them do not provide support
for testing of web service compositions, which is the
main purpose of TASSA framework. In addition,
TASSA framework follows SOA paradigm similar to
MIDAS platform and exposes its core functionality as

TASSA: A Testing as a Service Framework for Web Service Compositions

35

a web services deployed on the cloud. Its GUI could
be accessed from a local computer or used for
building a cloud test lab on a virtual machine.

3 ARCHITECTURE OF TASSA
FRAMEWORK

TASSA is a cloud-based framework for testing web
services orchestrations, de-scribed with WS-BPEL. It
reduces the testing effort by providing functionality
for automation and tracing of testing steps performed
during test project lifecycle.

The high level architecture of TASSA framework
is presented in Fig. 1. It consists of two main
components:
 Graphical User Interface (GUI) for test case

specification and execution;
 TaaS functionality for fault injection and

dependencies isolation.
The GUI provides functionality that is separated

in three layers: Test template design; Test case
generation; and Test case execution. It is
implemented as a plugin for Eclipse IDE.

At test template design layer a version of the
business process under test, called template, is created
by transformations over original *.bpel file. Two
types of transformations are supported:
 Isolation of activity – isolates the business

process from its external dependencies by
replacing one or more activities with such ones
that mimic their output.

 Fault injection – injects delays, errors, etc. in
the message exchange for a particular activity.

The isolation is performed through invocation of
appropriate operation of Simulate web service, while
the fault injection is provided by the ProxyInvoke web
service. Both web services are deployed on an
application server using Amazon EC2. Thus, the time
to obtain and boot a new server instances is reduced
allowing capacity to be scaled quickly as the
computing requirements change. The deployment

model of TASSA framework is shown in Fig. 2.
When a new test project is created a default read

only template, called Original, is generated. It holds
the original *.bpel file and all files from which its
deployment and execution depend on. It can be used
as a base for creation of new test templates or test
cases. When a new test template is created, a folder
structure is associated with it. It contains the
following items:
 Dependencies folder, which contains all files

the business process’s deployment and
execution depend on.

 deploy.xml file, which is the deployment
descriptor for the Apache ODE Server;

 *.tm file, which represents the created test
template and describes the actions, called steps,
that are applied to the business process;

 *.bpel file, which corresponds to a transformed
business process that will be used during test
execution.

At the next layer, the test cases are generated
automatically from the test tem-plates. The test
assertions can be specified manually by the tester in
two ways:
 Defining an XPath expression over a particular

business process’s variable that will be
evaluated during test case execution;

 Directly editing fields of particular business
process’s variable using provided XML editor.

The test assertions are useful in order to validate
the response messages re-turned by the partner web
services. They are stored in XML file with root
element, called ListOfAssertions. Each assertion
starts with Assert element that has three child
elements: variable, XPath and document. The
variable element of the assertion keeps the name of
the business process’s variable for which the test
assertion is defined. The xPath element contains an
XPath expression, if such is defined. If the test
assertion is specified by directly editing of the
business process’s variable, the document element
is filled with the content of that variable.

Figure 1: Architecture of TASSA framework.

AMARETTO 2016 - International Workshop on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

36

Figure 2: Deployment model of TASSA framework.

The test cases need to be added to execution set in
order to be executed. The execution sets allow test
cases to be grouped for simultaneous execution. The
result from execution of each test case is stored in
XML document, which elements are following:
 testCaseName – name of the test case;
 request – request to the business process;
 response – response from the business process;
 executionTime – duration time of the test case;
 compareResult – test verdict: true, if the test is

passed, and false – otherwise;
 traceEnabled – indication for tracing ability

activation;
 activitiesPassed – activities that have been

called during BPEL process execution;
 asserts – test case assertions;
 executionDate – execution date.

4 CASE STUDY

This section presents a proof of concept of TASSA
framework through a case study using a business
process, called Grapes Order. The business process
serves by wine companies while deciding to buy
grapes.

4.1 Business Process under Test

The Grapes Order is a synchronous business process
that calls three partner web services, namely Grape
Producer North, Grape Producer South and Perform
Order. Its graphical view is shown in Fig. 3. It takes
as an input information about the grapes variety, the

quantity and the delivery address. Then the Grape
Producer North and Grape Producer South partner
web services are invoked in parallel flow to check the
price of the grapes. After that an order is placed in the
inventory with the cheaper grape, again using one of
the partner web services. Finally, Perform Order
partner web service finalizes the order by calculating
the total price and the expected delivery date.

Figure 3: Wine Producer Business Process.

4.2 Test Template Design

The test template includes a version of the business

TASSA: A Testing as a Service Framework for Web Service Compositions

37

processes described with the BPEL language and all
accompanied documents like WSDL descriptions,
XSD schemas, etc. Using TASSA framework it is
possible to transform the original BPEL file to isolate
the business process from its external dependencies
or to simulate faults. Each transformation actually
produces a valid BPEL file that imitates the behavior
of the initial one in testing conditions.

In order to test the business process workflow, the
dependencies from the partner web services need to
be removed. The Grapes Order business process has
three partner web services and five invokes to them.
At isolation an Invoke activity should be selected and
then substitution values should be specified. As a
result, the Simulate web service of TASSA
framework transforms the BPEL file so that the
partner web service invocation is removed. Fig. 4
shows the BPEL code of the invoke activity that calls
the checkAvailabilityNorth operation of Grape
Producer North partner web service, while Fig. 5
presents its transformation.

Figure 4: Original “checkAvailabilityNorth” activity.

Figure 5: Transformed “checkAvailabilityNorth” activity.

Similar transformations are performed regarding
checkAvailabilitySouth operation of Grape Producer
South, PlaceOrderNorth operation of Perform Order
partner web service, PlaceOrderSouth operation of

Perform Order partner web service and InvokeOrder
operation of Perform Order partner web service.

TASSA framework supports robustness testing
providing functionality for an-other transformation.
In such case the BPEL file is transformed so that the
call to a partner web service is replaced with a call to
a ProxyInvoke web service. Thus, the fault injection
is performed.

The Grapes order business process is injected with
four type of faults supported by TASSA framework.

The simulation of delay in the response from
Grape Producer South web service is performed by
replacement of corresponding Invoke activity with
two Assign activities and one new Invoke activity.
The first Assign activity provides configuration
information to the ProxyInvoke web service as
follows:
 Wait interval – an integer value that defines

the delay of message in seconds;
 Error factor – an integer value that that

defines the kind of error will be injected
(1÷100: insert random errors in the data, which
would possible break the XML structure; 0:
usually used with Wait interval to delay the
message; - 1: replace the original values in the
message; -2: interrupt the message)

 End point address – an end point address of
the partner web service;

 Activity variable – input variable of the
partner web service, which invocation is
injected with faults.

The second Assign activity copies the result from
invocation of ProxyInvoke web service to the output
variable of the partner web service, which invocation
is injected with faults. The Invoke activity calls
ProxyInvoke web service.

Similar transformations are performed regarding
Grape Producer North and Perform Order partner
web services.

Test templates created for the business process
under test are listed in Table 1.

TASSA framework also supports generation of
test templates from the existing one. Thus, a rollback
to the previous version of the business process under
test could be performed.

4.3 Test Case Definition

Test cases created with TASSA framework are in
correlation with test templates. Each test case is
linked to exactly one test template. It consists of test
in-put, expected output and assertions if any. During
test case execution the BPEL file from the test
template is deployed on the application server, the test

<bpel:invoke name="checkAvailabilityNorth"
 partnerLink="GrapeProducerNorth"
 operation="checkAvailability"
 portType="ns:GrapesProducerNorth"
 inputVariable="GrapeProducerNorthRequest"
 outputVariable="GrapeProducerNorthResponse">
</bpel:invoke>

<bpel:assign
name="AssignIsolate1checkAvailabilityNorth">
 <bpel:copy>
 <bpel:from>
 <bpel:literal xml:space="preserve">
 <Q1:checkAvailabilityResponseElement

xmlns:Q1="…" xmlns:xsi="…">
 <Q1:isAvailable>true</Q1:isAvailable>
 <Q1:Available_Quantity>1.0

</Q1:Available_Quantity>
 <Q1:Price>13.4</Q1:Price>
 <Q1:Delivery_Time>48</Q1:Delivery_Time>
 </Q1:checkAvailabilityResponseElement>
 </bpel:literal>
 </bpel:from>
 <bpel:to part="parameters"
variable="GrapeProducerNorthResponse"/>
 </bpel:copy>
</bpel:assign>

AMARETTO 2016 - International Workshop on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

38

Table 1: Test templates (TT).

TT Description

TT1 Original business process without any
transformation

TTI1 Isolation of all partner web services

TTI2 Isolation of Perform Order partner web
service

TTI3 Isolation of Grape Produces North partner
web service

TTI4 Isolation of Grape Produces South partner
web service

TTF1 Simulation of small delay in the response
from partner web service

TTF2 Simulation of large delay in the response
from partner web service

TTF3 Simulation of missing partner web service

TTF4 Simulation of low level noise in the
response from partner web service

TTF5 Simulation of high level noise in the
response from partner web service

TTF6 Simulation of response with wrong data
from partner web service

input from the test case is sent as a request to the
business process, its response is compared to the
expected output and the assertions from the test case
are checked.

Actually, many test cases could be created from
the same test template. Thus, several requests with
different test inputs will be send to the same version
of the business process (deployed BPEL file). Using
this feature of TASSA framework a set of test cases
are created from the test templates described above.

Two test cases for the test templates that isolate
Grape Producer North and the Grape Producer South
web services are created (TCI1 and TCI2). They pro-
vide full path coverage of the business process since
both True and False branches of the If activity are
executed. The same test scenarios are designed when
the partner web services are available and their
operations are actually invoked (TC1 and TC2).

Several test cases with invalid data are also
created (negative test cases):
 TCN1 – send request with zero quantity;
 TCN2 – send request with quantity over

availability;
 TCN3 – send request with invalid grape type;
 TCN4 – send request with invalid quantity;
 TCN5 – send request with invalid delivery

type.
In order to perform robustness testing the

following test cases are defined using fault injection
features of TASSA framework:

 TCF1 – simulates a small wait interval;
 TCF2 – simulates a big wait interval;
 TCF3 – simulates missing partner web service;
 TCF4 – simulates low level noise in the

response from partner web service;
 TCF5 – simulates high level noise from partner

web service;
 TCF6 – simulates response from partner web

service with random data.
As it was already mentioned, TASSA testing

framework supports specification of test assertions,
namely XML assertions and XPath assertions. Fig. 6
shows a sample assertion defined for the response
from Perform Order partner web service.

Figure 6: GUI for writing an assertion.

XML Assertion compare the specified XML
message with the received one. In many cases,
especially when dynamic data such as IDs or Dates
are used, it is better to check only part of the XML
message. In such cases the XPath assertion is
recommended to be used.

4.4 Test Case Execution

Test cases are grouped in Execution sets. The
execution set is a list of test cases, which are executed
in the order specified in the list. The test cases in the
execution set can be logically grouped. For example
all negative test could be arranged in one execution
set and all tests performing isolation could be
arranged in other execution set. This feature of
TASSA framework is especially useful when it is
applied to test cases that should be executed in proper
order. For ex-ample, one may need to execute a test
which adds some quantity for a given item and then
to execute a test in which this item is sold. Similarly
to the test tem-plates, the test cases are reusable.
Single test case can be placed in more than one
execution set.

When execution sets are ready to run on the
application server, for each test case the results are
collected and the assertions are checked. The results

TASSA: A Testing as a Service Framework for Web Service Compositions

39

are written in log files that are grouped according to
the execution set they belong to.

Table 2 shows the results from execution of the
test cases when partner web services are isolated and
when partner web services are actually invoked and
the business process receives valid test data. Using
TASSA framework the isolation is performed in a
way that the business process acts in the same way as
when the real partner services are available and
called.

Table 2: Test cases showing isolation of partner web
services.

Test
Case

Input Expected
Output

Received
Output

TCI1 white,1,fast reserved,
north,48h

reserved,
north,48h

TCI2 red,2,normal reserved,
south,48h

reserved,
south,48h

TC1 white,1,fast reserved,
north,48h

reserved,
north,48h

TC2 red,2,normal reserved,
south,72h

reserved,
south,72h

Table 3 shows the results from execution of test
cases when the business process receives invalid data
(negative test cases). Usually a well formed business
process should catch exceptions and send proper
messages when incorrect action is performed. That is
why, an informative or error message is expected to
be received in case of testing with invalid values.
After performing the negative tests (those with
invalid test data) and checking the execution logs, it
was found that the business process does not catch
several exceptions.

Table 3: Test cases with invalid data.

Test
Case

Input Expected
Output

Received
Output

TCN1 white,0,fast informative
message

reserved,
north,48h

TCN2 red,99999,normal informative
message

log error

TCN3 123,1,fast informative
message

log error

TCN4 red,A,normal error
message

log error

TCN5 red,1,123 informative
message

log error

Table 4 shows the results from robustness testing
of the business process. Such testing suppose that the
system under test should not crash and respond with
error message, overcoming violations if it is possible.

The Grapes Order business process acts properly
in case of small delays of the response from a partner

Table 4: Test cases performing robustness testing.

Test
Case

Failure
Parameter

Expected
Output

Received
Output

TCF1 Wait=10s delayed
common
output

delayed
common
output

TCF2 Wait=20m Time elapsed Time
elapsed

TCF3 Interrupt error message error
message

TCF4 Noise
range=1%

log
error/common
output/
informative
msg

log error

TCF5 Noise
range=60%

log error log error

TCF6 Random informative
message/ error
output

common
output

web service. It returns an expected output with a
delay specified with the wait interval parameter of the
Proxy Invoke web service of the TASSA framework.
In case of long message delay from partner web
service, missing partner web service or noise in the
communication channel the business process crashes
and the server logs should be explored in order to fix
the problems. Test results obtained when random
invalid data is injected in the response form partner
web service show differences between the expected
and the received outputs. It is expected that when a
random invalid data is sent, the process should
respond with informative or error message. As Table
4 shows the business process accepts such data and
responds with a common output. Therefore,
additional fixtures should be done in the business
process.

5 CONCLUSIONS

The paper presents TASSA framework for testing
web service compositions de-scribed with WS-BPEL.
Its core functionality is implemented as web services
deployed on a cloud infrastructure. A case study over
a business process serving a wine company is used as
a proof of concept. It shows the usefulness and
benefits of TASSA framework as follows:
 Ability to test web service compositions even

if partner web services are unavailable or under
development through provided functionality
for dependency isolation;

 Ability to perform robustness testing through

AMARETTO 2016 - International Workshop on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

40

provided functionality for fault injection;
 Availability of on-demand testing services

allowing testers to provision raw cloud
resources at run time, when and where needed;

 Reduced cost of testing due to pay-per-use
basis of testing services;

 Shows SUT’s problems (bugs).
The future work includes application of TASSA

framework to testing more complex business
processes having tens partner web services. Its
performance and efficiency will be evaluated in
comparison with another automated testing tools as
well as manual testing. Additional functionality for
load testing and runtime monitoring is planned to be
implemented.

ACKNOWLEDGEMENTS

The authors acknowledge the financial support by the
Scientific Fund of Sofia University.

REFERENCES

Candea G., S. Bucur, Cristian Z, 2010. Automated Software
Testing as a Service (TaaS). In Proceedings of the 1st
ACM Symposium on Cloud Computing. pp. 155-160.

Parveen T., Tilley S., 2010. When to Migrate Software
Testing to the Cloud?. In Third International
Conference on Software Testing. Verification, and
Validation Workshops (ICSTW), pp.424-427.

Yu L., W. Tsai, X. Chen, L. Liu, Y. Zhao, L. Tang, Zhao
W., 2010. Testing as a Service over Cloud. In
Proceedings of the Fifth IEEE International
Symposium on Service Oriented Sys-tem Engineering.
pp. 181-188.

Gao J., X. Bai, Tsai W., 2013. Testing as a Service (TaaS)
on Clouds. In Proceedings of the Seventh IEEE
International Symposium on Service-Oriented System
Engineering. pp. 212-222.

Yu L., L. Zhang, Xiang H., Su Y., Zhao W., Zhu J., 2009.
A Framework of Testing as a Service. In Proceeding of
the Conference of Information System Management.

Sathe A., Kulkarni R., 2013. Study of testing as a service
(TaaS) – cost effective framework for TaaS in cloud
environment. In International Journal of Application or
Innovation in Engineering & Management (IJAIEM),
Volume 2, Issue 5, pp.239-243.

Yan M, Sun H., Wang X., Liu X., 2012. Building a TaaS
Platform for Web Service Load Testing. In Proceeding
of the IEEE International Conference on Cluster
Computing. pp. 576-579.

Apache JMeter, http://jmeter.apache.org/, last accessed on
11.06.2015.

Herbold S. et al., 2015. The MIDAS Cloud Platform for
Testing SOA Applications. In Proceedings of the IEEE

8th International Conference on Software Testing,
Verification and Validation (ICST), pp. 1-8.

SOASTA CloudTest, https://www.soasta.com/wp-
content/uploads/2015/05/CT-Data-Sheet.pdf, last
accessed on 12.06.2015.

SOASTA CloudTest, https://saucelabs.com/downloads/
one_pager_sales_sheet.pdf, last accessed on
12.06.2015.

IBM Rational Performance Tester, https://www.ibm.com/
developerworks/cloud/library/cl-loadtest-softlayer-trs/,
last ac-cessed on 12.06.2015.

Oracle Testing as a Service, http://www.oracle.com/
technetwork/oem/cloud-mgmt/ds-oracletesting-as-a-
service-1905796.pdf, last accessed on 12.06.2015.

Parasoft Cloud Testing, http://www.parasoft.com/
capability/cloud-testing/, last accessed on 12.06.2015.

Amazon EC2, http://aws.amazon.com/ec2/, last accessed
on 18.06.2015.

Bartolini, C., Bertolino, A., Lonetti, F. and Marchetti, E.,
2012. Approaches to functional, structural and security
SOA testing. In Performance and Dependability in
Service Computing: Concepts, Techniques and
Research Directions, Valeria Cardellini, Emiliano
Casalicchio, Kalinka Regina Lucas Jaquie Castelo
Branco, Julio Cezar Estrella, Francisco Josè Mona-co
(eds.). Hershey, PA, USA: IGI Global, pp. 381-401.

Bucchiarone, A.; Melgratti, H., Severoni, F., 2007. Testing
Service Composition. In Proceedings of the 8th
Argentine Symposium on Software Engineering
(ASSE).

Bartolini, C., Bertolino, A., Marchetti, E., Polini, A., 2008.
Towards Automated WSDL Based Testing of Web
Services. In Proceedings of the 6th International
Conference on Service-Oriented Computing. Volume
5364 of LNCS, pp. 524-529.

Dong, W., 2009. Testing WSDL_based Web service
automatically. In Proceedings of the WRI World
Congress on Software Engineering. pp. 521-5.

Noikajana, S., Suwannasart, T. An improved test case
generation method for Web service testing from
WSDL-S and OCL with pair-wise testing technique.
Proceeding of the 33rd Annual IEEE International
Computer Software and Applications Conference,
2009, p 115-23.

Bai, X., Dong, W., Tsai, W.-T., Chen, Y., 2005. WSDL-
based automatic test case generation for Web Services
testing. In Proceedings of the IEEE International
Workshop on Service-Oriented System Engineering. pp.
215-220.

Lopez, M., Ferreiro, H., Francisco, M.A., Castro, L.M.,
2013. Automatic Generation of Test Models for Web
Services Using WSDL and OCL. In Proceedings of the
11th International Conference on Service-Oriented
Computing (ICSOC). pp. 483-490.

Masood, T., Nadeem, A., Ali, S., 2013. An automated
approach to regression testing of Web services based on
WSDL operation changes. In Proceeding of the IEEE
9th International Conference on Emerging
Technologies (ICET). pp. 1-5.

TASSA: A Testing as a Service Framework for Web Service Compositions

41

García-Fanjul J., J. Tuya, de la Riva Cl., 2006. Generating
Test Cases Specifications for BPEL Compositions of
Web Services Using SPIN. In International Workshop
on Web Services Modelling and Testing. pp. 83-94.

Hou, S.-S., Zhang, L., Lan, Q., Mei, H. Sun, J.-S., 2009
Generating effective test sequences for BPEL testing.
In Proceeding of QSIC’09. pp. 331-340.

Yuan, Y., Li, Z. Sun, W., 2006. A graph-search based
approach to BPEL4WS test generation. In Proceeding
of ICSEA. pp. 14-22.

Cao, T.-D., Felix, P., Castanet, R. Berrada, I., 2010 Online
testing framework for web services. In Proceeding of
ICST. pp. 363-372.

Karam M., H. Safa, H. Artail., 2007. An abstract workflow-
based framework for testing composed web services. In
Proc. of Int. Conf. on Computer Systems and
Applications. pp. 901–908.

Li Z. J., Tan H. F., Liu H. H., Zhu J., Mitsumori N. M.,
2008. Business-process-driven gray-box SOA testing.
In IBM Systems Journal 47. pp. 457-472.

Zhu H. Zhang Y., 2012. Collaborative Testing of Web
Services. In IEEE Transactions on Services Computing,
vol. 5, no. 1, pp. 116-130.

AMARETTO 2016 - International Workshop on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

42

