
Testing Multimodal Interactive Applications by Means of the TTT
Language

Le Thanh Long1, Nguyen Thanh Binh2 and Ioannis Parissis3
1Department of Computing, Duy Tan University, 182 Nguyen Van Linh, Da Nang, Vietnam

2Department of Computing, The University of Danang, University of Science and Technology,
54 Nguyen Luong Bang, Da Nang, Vietnam

3Grenoble INP LCIS, Univ. Grenoble Alpes, F-26902 Valence, France

Keywords: Interactive Multimodal Applications, Test Modelling Language, CARE Properties.

Abstract: Developing interactive applications is a complex activity as they must deal with various kinds of human-
computer interactions. This is especially true when these interactions use multiple modalities (voice,
gesture…). As a result, thoroughly testing such applications is particularly important and requires more
effort than for traditional interactive applications. In this paper, we propose an approach for automating the
test generation of such multimodal applications. This approach is based on the definition of a new test
modelling language, TTT. Test models provided in TTT can be translated intest generators.TTT deals with a
well-known class of multimodality properties: the CARE properties. The whole approach is illustrated on a
case study.

1 INTRODUCTION

Interactive Multimodal Applications (IMA) support
communication with the user through different
modalities, such as voice or gesture. They have the
potential to greatly improve human-computer
interaction, because they can be more intuitive,
natural, efficient, and robust. Flexibility is obtained
when the user can use equivalent modalities for the
same tasks while robustness can result from the
integration of redundant or complementary inputs.

The CARE properties (Complementarity,
Assignment, Redundancy, Equivalence) can be used
as a measure to assess the usability of the
multimodal interaction (Coutaz et al., 1995).
Equivalence and Assignment represent the
availability and, respectively, the absence of choice
between multiple modalities for performing a task
while Complementarity and Redundancy express
relationships between modalities. The flexibility and
robustness of multimodal applications result in an
increasing complexity of the design, development
and testing. Therefore, ensuring their correctness
requires thorough validation.

Approaches based on formal specifications
automating the development and the validation

activities have been proposed to deal with this
complexity. They adapt existing formalisms to the
particular context of interactive applications.
Examples of such approaches are the Formal System
Modelling (FSM) analysis (Duke and Harrison,
1993), the Lotos Interactor Model (LIM) (Paternò
and Faconti, 1993), the Interactive Cooperative
Objects (ICO) (Palanque and Bastide, 1995) or
formal methods such as B (Aıt-Ameur and Kamel,
2004). Model-based testing methods focusing on the
specification of the user behaviour have also been
studied. For instance, the method presented in
(Richard et al., 1997) relies on the specification of a
finite state machine.

In (Ter Beek et al., 2009), Maurice H. terBeek et
al. propose stochastic modelling and model checking
to predict measures of the disruptive effects of
interruptions on user behaviour. The approach also
provides a way to compare the resilience of different
interaction techniques to the presence of external
interruptions that users need to handle. In (Palanque
et al., 2009), P. Palanque et al. presents an approach
for investigating in a predictive way potential
disruptive effects of interruptions on task
performance in a multitasking environment.

In (Kamel and Aït Ameur, 2007), N. Kamel et al.
propose a formal model allowing representing the

Long, L., Binh, N. and Parissis, I.
Testing Multimodal Interactive Applications by Means of the TTT Language.
DOI: 10.5220/0005842500230032
In Proceedings of the International Workshop on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn (AMARETTO 2016), pages 23-32
ISBN: 978-989-758-166-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

23

input multimodal user interaction task and the
CARE usability properties. Once the multimodal
interaction task model is designed, the
corresponding property is checked using the SMV
(Symbolic Model Verifier) model-checker. They
also propose an approach for checking adaptability
properties of multimodal User Interfaces (UIs) for
systems used in dynamic environments like mobile
phones and PDAs (Kamel et al., 2008). The
approach is based on a formal description of both the
multimodal interaction and the property. The SMV
model-checking formal technique is used for the
verification process of the property. In (Mohand-
Oussaïd et al., 2015), L. Mohand-Oussaïd et al.
present a generic approach to design output
multimodal interfaces. This approach is based on a
formal model, composed of two other models:
semantic fission model for information
decomposition process and allocation model for
modalities and media allocation to composite
information. An Event-B formalization has been
proposed for the fission model and for allocation
model. This Event-B formalization extends the
generic model and supports the verification of some
relevant properties such as safety or liveness.

The synchronous approach has been proposed to
model and verify by model-checking some
properties of interactive applications (Madani et al.,
2005), but its applicability is limited to small pieces
of software.

In (Madani and Parissis, 2009), Laya Madani et
al. present a technique of test case generation for
testing CARE properties by means of a synchronous
approach. According to the proposed approach,
CARE properties are translated into an enhanced
version of the Lustre synchronous language. An
improved method presented in (Madani and Parissis,
2011) uses Task trees and a fusion model to perform
test data generation for interactive multimodal
applications. As an additional improvement to this
previous research work, we have recently proposed
an automatic test generation approach based on a
new test modelling language, TTT (Task Tree base
Test) (Le et al., 2014) The main new feature of the
TTT language is that it supports conditional
probability specifications, used to express advanced
operational profiles. Such conditional specifications
may depend on the history of the user actions. A test
generation engine makes it possible to produce test
data compliant with such a description. For this, user
actions are stored during the test execution.

In this paper, we extend the above mentioned
work in order to take into account multimodality.
The TTT language is extended to specify

multimodal events of IMA and CARE properties as
well as to check the validity of CARE properties.
Hence, multimodal test data can be automatically
generated from a TTT specification of IMA.

The paper is organized as follows: In Section 2,
we provide the necessary background. Section 3
presents the extension of theTTT language for
generating tests and checking the validity of CARE
properties. A case study is presented in Section 4.

2 BACKGROUND

2.1 Task Trees

Task trees are often used in the design of interactive
software applications (Paternò et al., 1997) to
hierarchically build task models. A well-known
notation for such task models is ConcurTaskTree
(CTT). CTT includes four kinds of tasks: User tasks
(no interaction with the application, just an internal
cognitive activity such as thinking about how to
solve a problem), application tasks (application
performance, such as generating the results of a
query, no interaction with the user), interaction tasks
(involving user actions with immediate feedback
from the application, such as editing a document)
and abstract tasks (tasks composed of other
subtasks). A CTT abstract task is composed of
subtasks connected by means of temporal operators,
for example, there is an enabling operator denoted
by >> which specifies that one task enables a second
one when it terminates.

A CTT model is mainly intended to help
designers to define interactive applications.
However, it has been shown that the same notation
can be also used to define test models describing the
interaction between the user and the application and
providing valuable information about the possible
user behaviour.

2.2 Finite State Machines

Finite State Machines (FSMs) are widely used to
model the behaviour of interactive applications. This
model includes the states, the actions and the
transitions presented by a state diagram (Madani
and Parissis, 2009). When an interactive application
is specified by a finite state machine, the states
represent an abstraction of the operating status of
interactive applications. The operations can be
repeated, so the states can also be repeated. Initial
state is a state that interactive applications begin to
be used. Final state is the state where the interactive

AMARETTO 2016 - International Workshop on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

24

application ends. Inputs are the user's tasks and
outputs are application tasks.

2.3 Multimodal Interaction: CARE
Properties

An interactive multimodal application uses at least
two modalities (keyboard, speech, mouse...) for a
given direction (input or output). Within a
multimodal application, modalities can be used
independently, but the availability of several
modalities naturally raises the issue of their
combined use (fusion of modalities). When talking
about test data generation, we are mainly concerned
with inputs, so in this paper we focus on multimodal
input interaction.

The combined use of modalities is constrained
by temporal constraints. It can be carried out
sequentially or concurrently (Coutaz et al., 1995)
within a Temporal Window (TW), that defines a
time interval. The modalities of a set M are used
concurrently if they are used at the same instant. The
modalities of a set M are used sequentially within
the TW, if there is at most one active modality at
every instant and if all the modalities in this set are
used within the TW. The concurrency and the
sequencing express a constraint on the interaction
space. The absence of a temporal constraint means
that the duration of the TW is infinite. The CARE
properties form an interesting set of relations that are
relevant when characterizing multimodal
applications. The Assignment implies that a single
modality is assigned to a task. The Equivalence of
modalities implies that the user can perform a task
using a modality chosen amongst a set of modalities.
The Complementarity denotes several modalities
that convey complementary chunks of information.
The complementary modalities must be used
simultaneously or sequentially within the same TW.
The Redundancy indicates that the same piece of
information is conveyed by several modalities.
Redundant modalities must also be used
simultaneously or sequentially within the same TW.

2.4 Operational Profiles

Operational profiles (Musa, 1993) provide
information about the effective usage of an
application. In particular, they can be used to guide
the test process. For the particular case of interactive
applications, operational profiles can be easily
defined by assigning occurrence probabilities to
some of the described behaviours. In (Madani and
Parissis, 2009), the CTT notation was extended with

occurrence probabilities to make possible to specify
operational profiles.

2.5 Generating Test Data for IMA

Task trees are used in the design of interactive
applications. To generate automatically the test data
from task trees, the task tree is translated into a
probabilistic finite state machine (PFSM).

It is assumed that the PFSM is simulated while
the interactive application under test is executed and
that inputs and outputs are exchanged between them
on-the-fly. During the simulation, assuming the
PFSM to be in a given state, an input is chosen
according to the probabilities of the outgoing
transitions of this state. The chosen input is then sent
to the interactive application, the resulting
application outputs are read and the next state
computed, and so on.

2.6 The Interactive Multimodal
Application Memo

The interactive application "Memo" (Madani and
Parissis, 2009) makes it possible to annotate
physical locations with digital stickers ("post it"-like
notes). Once a digital sticker has been set to a
physical location, it can be read/carried/removed by
other users. A Memo user is equipped with a GPS
and a magnetometer enabling the application to
compute his/her location and orientation. S/he is also
wearing a head mounted semi-transparent display
(HMD) enabling the fusion of computer data (the
digital notes) with the real environment. Memo
provides three main tasks: (1) orientation and
localization of the mobile user, so that the
application is able to display the visible notes
according to the current position and orientation of
the mobile user (2) manipulation of a note (get, set
and remove a note) and (3) exiting the application.
So, the mobile user can get a note and carry it while
moving. S/he can set a carried note to a specific
place or delete a visible or carried note.

Figure 1 shows an extended CTT for the Memo
application (interaction tasks are represented by
☺�). To generate test data, the task tree is translated
into a PFSM. The PFSM is simulated while the
interactive application under test is executed and that
inputs and outputs are exchanged between them on-
the-fly. It is thus possible to describe abstract
interaction scenarios as task trees, and observe the
behaviour of the interactive application under test.
Figure 2 shows a PFSM example for the Memo
application.

Testing Multimodal Interactive Applications by Means of the TTT Language

25

Figure 1: Example of Task tree model.

Figure 2: FSM Example for the Memo application.

Figure 3 shows a fusion model for the Memo
application.

Tasks (get, set, remove, move, turn, exit);
Modalities (Speech (get, set, remove),
Mouse(get, set, remove),
Keyboard(get, set, remove, move, turn, exit));
Equivalence ((Speech, Mouse, Keyboard),
 (get, set, remove));
Assignment ((Keyboard), (move, turn, exit));

Figure 3: Example of fusion model.

2.7 Taking into Account Conditional
Probabilities

The above presented approach uses several
notations, inspired from existing modelling
languages, to build test models: a model of the
application behaviour (a task tree), a model of the
interactive tasks (FSM), operational profiles
(annotations on the task tree), and modality

specifications. The variety of notations makes the
modelling process hard. Moreover, operational
profiles cannot be defined using conditions
(however, an occurrence probability is often
assigned to an event according to a condition).

Therefore, we have proposed the test modelling
language TTT (Le et al., 2013) allowing to express:

− Scenarios for interactive applications.
− Conditional probability specifications for task

trees.
− The “traces” of the user actions and read-only

functions on these traces.
− Expected properties of the application.

The conditional probability specifications for task
trees must be defined in the test model. This means
that the TTT language is designed to allow the
definition of variables, for example, Cond = (X > 5),
where X is an application input or output variable.
Moreover, there are a lot of “rich” conditions that
need to be expressed, for example,
Cond=F(parameter)>5 where F is a function that
can return a float value.

2.7.1 The TTT Language

A basic structure of a TTT model consists of a
TESTCTT block and one or more FUNCTIONs.
TESTCTT is defined by a set of clauses and the
general form of a TESTCTT.

<tttmodel> ::= <testctt><function>+
<testctt> ::= <testctt_name><testctt_set>
<testctt_var><testctt_init><begin_end>
<testctt_name>::=TESTCTT<name>
<testctt_set> ::= sets <basic_type>+ ;
<testctt_var> ::= var<local_variable>+ ;
<testctt_init> ::= init<initial_state>+ ;
<begin_end> ::= begin <statement>+ end;
<statement>:=<beginend>|<invar_operator>|

<ctt_operator>|<sql_statement>|
<conditional_struct> |<iteration-statement>

<begin_end> ::= begin<statement>+ end;

We define the syntax for describing the CTT
operators, which take into account conditional
probabilities. The ctt_operators are used to create
tasks from conditional operational profiles where the
selection of the program inputs is performed with
respect to probabilities specified by the tester.
<ctt_operator> ::= <choice> | <concurrency> |
<deact> | <sr> | <option> | <enabling> | <iteration> |
<fiteration>

We save all the past actions of the users and
build functions on them. Functions are intended to
be part of the conditions. We use an SQL-like
language to update and search the data. We inherit
and reduce the following SQL statements:

Move/-0.45
µ/memoCarried 0.18

remove/
memoRemoved 0.18

remove/
memoRemoved 0.63

q

q3

q2

Move/-0.45

µ/memoCarried
0.18

µ/memoDisplayed
0.27

µ/ memo-
Displayed
0.27

get/memoTaken 0.72

set/memoSet0.27

q1
exit

exit/-0.1

exit/-0.1

Turn/0.09

q4

exit/-0.1

q0

Memo

Use memo system* Exit
☺

 Explore the ground [] (0.5,0.5) Handle notes

 Get [](0.8,0.2) remove Set [] (0.3,0.7) remove
 ☺� ☺� ☺� ☺�

[>(0.1)

Move [] (0.8,0.2) turn
☺� ☺�
 Handle a displayed Note [](0.6, 0.4) Handle a carried note

Memo Displayed >> Get or remove Memo carried >> Set or remove

AMARETTO 2016 - International Workshop on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

26

<sql_statement> ::= <create_table> | <alter_table> |
<drop_table> | <insert> | <delete> | <update>| <select>

2.7.2 Test Execution Environment

For the purpose of testing interactive applications,
we have built a testing environment (Le et al., 2014),
called TTTEST (TTT-based Test), in Figure 4.

Figure 4: The TTTEST testing evironment.

The TTTEST testing environment consists of
four basic components: TESTCTT model specified
by TTT language, C program translated from
TESTCTT models, interactive multimodal
application under test, traces of the action user. The
TTTEST environment activities are described as
follows:

− Step 0: The TESTCTT model is translated
into a C program which is executed.

− Step 1: The C program produces output data
X from its internal state.

− Step 2: Output X is translated into input data
for IMA.

− Step 3: IMA receives and processes input X
and generates output Y.

− Step 4: Program C receives Y as input data,
updates internal state variable of the model
and returns to Step 1.

A TESTCTT model is specified withTTT
language. We translate a TESTCTT model into a C
program which implements the corresponding test
generator. The translation, the details of which are
presented in (Le et al., 2014), involves many
different steps. The simplest steps are lexical
substitutions; operators and keywords in TTT are
replaced by corresponding C operators and tokens.
The second level of translation involves syntactic
transformations. Certain constructs in TTT have
equivalent constructs in C, but with differing orders
of the tokens. The structures of high abstraction
level of CTT operators must be converted into
structures with more concrete level in the C
language. Finally, the SQL statements from the TTT
language are translated into equivalent C statements.

3 TAKING INTO ACCOUNT
MULTIMODALITY

While testing IMA, the number of input events may
increase dramatically. Indeed, each input can be
produced in several modalities so the number of
possible input event combinations can be much
bigger than in the case of single modalities.
Moreover, the fusion mechanism of IMA depends
on TWs within which the user event occurs. For
example, when two modalities are used in a
redundant way, the resulting events must be
combined only when they occur in the sameTW.

The above observations suggest that there are
two different issues when testing IMA: (1)
generating tests for multimodal events, (2) checking
the validity of the CARE properties. While the first
issue is strictly related to test generation, the second
one should be part of a test oracle. We propose to
extend the TTT language to deal with both issues, as
described in the following subsection.

3.1 Generating Tests for Multimodal
Events

To simulate user behaviours for IMA, we use a test
data generation technique based on conditional
operational profiles. We add the operator modalities
to the TTT language to generate tests for multimodal
events. The syntax of modalities operator is the
following:
<modalities>::=modalities (<expression-list>)
The tester can use modalities(EM1, EM2,…, EMn,
p1,p2,…,pn, cond1, p11,p12,…,p13, cond2,
p21,p22,…,p23), where i∈[1,n] EMi are events, pi are
probabilities; condi are conditions; and pi,j (i∈[1,n],
j∈[1,n]) are conditional probabilities. The semantics
of this operator is expressed as follows:

{ n is a random real number in [0,1]
 n= rand(1)
if (Cond1== TRUE) {
if (n<= P11) EM1= 1 else EM1 = 0;
 if (n<= P12) EM2= 1 else EM2 = 0;
 …
if (n<= P1n) EMn= 1 else EMn= 0;
}
 elseif (Cond2== TRUE) {
 if (n<= P21) EM1= 1 else EM1 = 0;
 if (n<= P22) EM2= 1 else EM2 = 0;
 …
if (n<= P2n) EMn= 1 else EMn= 0;
 }
 else {
 if (n<= P1) EM1= 1 else EM1 = 0;
 if (n<= P2) EM2= 1 else EM2 = 0;
 …

Output

Input

IMA TestCTT

Model

 C program
Translation

Trace of user actions

Testing Multimodal Interactive Applications by Means of the TTT Language

27

if (n<= Pn) EMn= 1 else EMn= 0;
 }
}

Consider the following example:

Modalities (speech(Remove), mouse(Remove),
keyboard(Remove),0.5,0.5,0.5,note_nb()=0,0,
0,0,note_nb()>=5,0.5,0.9,0.7);
The events Speech(remove), Mouse(remove) and

Keyboard(remove) are generated along probabilities
0.5, 0.5, 0.5 respectively. If there is no note, the user
cannot remove, so probabilities are 0, 0, 0. But if
there are more than 5 notes, the user will use other
probabilities for these events. The events generated
are presented in Table 1.

Table 1: Events are generated by Modalities operator.

Time sR mR kR Memo

1
2
3
..

0
0
0
…

0
0
1
…

0
0
1
…

…
Se

Tak
…

In Table 1, we use the abbreviation sR, mR and
kR respectively for speech(Remove), mouse(Remove)
and keyboard(Remove). At the time 1, there is no
note in the Memo, the user do not use any event. But
at the time 3 when a note is visible (Set (Se)
occurred in the previous step) the user takes it (Tak)
by mouse(Remove) and keyboard(Remove).

3.2 Checking the Validity of CARE
Properties

3.2.1 Equivalence

Let M1, M2 be two modalities. Let EM1, EM2 be two
expressions along M1, M2 respectively. Two
modalities M1, M2 are equivalent with respect to task
T, if every task t ∈T can be activated by EM1 or EM2.
Equivalence admits a single input event to be
propagated. We add the operator
TestEquivalence(EM1 ,EM2, T, tw) into TTT language
to check the validity of the Equivalence property.

The syntax of TestEquivalence operator is the
following:

<TestEquivalence>::=
TestEquivalence(<expr>,<expr>,<expr>,<expr>)

The tester can use TestEquivalence(EM1 ,EM2, T,
tw) and the meaning of this operator is expressed as
follows:

1.begin
2. T1 = select distinct Tout from U_ACTIONS
where EM1= EM1 and time between(now()–tw)
and now();
3. T2 = select distinct Tout from U_ACTIONS
 where EM2 = EM2 and time between(now()-tw)
 and now();
4. if ((T == T1) and (T ==T2))
5. IsEquivalence= True
6. else begin
8. output(“EM1 and EM2 are not equivalent”);
9. stop program;
10.end
11.end

T1 and T2 are two tasks corresponding to two
events E1 and E2 in U_ACTIONS table (lines 2,3).
If task T1 is different from task T2, events E1 and
E2 are not equivalent (line 8). The program under
test will be stopped (line 9).

Table 2 shows an extract example of the
execution trace, the result of
TestEquivalence(speech, mouse, get, 7).

Table 2: The result of TestEquivalence.

Time Speech(get) Mouse(get) Tout TestEquivalence
1
2
3

1

1

get

get

Speech(get)=
Mouse(get)

It can be observed that when the user does
speech(get), Tout is equal to“get” in time 1. When
the user uses the mouse to choose "get" (mouse(get))
Tout is equal to“get” in time 3. So event speech(get)
is equivalent to event mouse(get).

3.2.2 Redundancy-Equivalence

If there are several input events, redundancy requires
the fusion process to choose one event among those
of all the available modalities. Equivalence admits a
single input event to be propagated.The
Redundancy-Equivalence input events which are
temporally close are merged and the associated
output task is enabled as soon as the required inputs
have been identified. The occurrence of one event of
every modality in the current TW is enough to
enable the output task. It is possible that several
events of the same modality occur in this window. In
that case, the task is computed according to the last
event of each modality.

We add operator
TestRedundant_EquivalenceEarly into TTT to test
the Redundancy-Equivalence of two events EM1 and
EM2 in early fusion strategies. The syntax of
TestRedundant_EquivalenceEarly operator is the
following:

<testRE>::= TestRedundant_EquivalenceEarly
(<expr>,<expr>,<expr>,<expr>)

AMARETTO 2016 - International Workshop on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

28

The tester can use TestRedundant_EquivalenceEarly
(EM1, EM2, TaskTM1M2, tw) and the semantics of this
operator is as follows:
1.begin
2.T_out = select distinct Tout from
 U_ACTIONS where((EM1 = EM1)or (EM2 =EM2))
and (time between(now() – tw)and now())
3.T_out_nb = select count(Tout) from
U_ACTIONS where((EM1 = EM1)or(EM2 = EM2))
 and (time between(now() – tw)and now())
4.if((Tout_nb==1)and(T_out==taskTM1M2))then
5. output (“EM1 and EM2 are redundant -
equivalent”);
6.else
7. begin
8.output (“EM1, EM2 are not redundant-
equivalent”);
9. stop program;
10.end
11.end

T_out is the task that is generated in Temporal
Window. Tout_nb is the number of tasks generated
from the event EM1 or EM2 (line 5). The Redundancy-
Equivalence property of two events EM1 and EM2 is
tested by condition (line 4): ((Tout_nb == 1) and
(T_out = taskTM1M2)). If there is only one task
generated in TW and T_out is the taskTM1M2, EM1
and EM2 are Redundant-Equivalence. Table 3 shows
an extract of the execution trace resulting from
TestRedundant_EquivalenceEarly (Speech_T,
Mouse_T, TaskTM1M2, 5) with Tw = 5.

Table 3: The result of TestRedundant_EquivalenceEarly.

Time EM1 EM2 Tout TESTRedundant_
EquivalenceEarly 1 2 3 4 5

Speech_Task Speech_ Task Speech_ Task
 Mouse_Task Mouse_ Task

Task

Speech_Task,
Mouse_Task are
Redundant-
Equivalence

3.2.3 Complementarity (C)

Let M1, M2 be two modalities. Let EM1, EM2 be two
expressions along M1, M2 respectively. Two
modalities M1, M2 are complementary with respect
to a set of Task T, if every task t∈T can be activated
by EM1 and EM2. EM1 and EM2 must occur in the same
TW, i.e.Abs((time(EM1) – time(EM2)) < Tw.

The complementary input events which are
temporally close are merged and the associated
output task is enabled as soon as the required inputs
have been identified. The occurrence of one event of
every modality in the current TW is enough to
enable the output task. It is possible that several
events of the same modality occur in this window. In
that case, the task is computed according to the last

event of each modality.
We add operator TestcomplementaryEarly (EM1,

EM2, TaskTM1M2, tw) into TTT language to test the
complementary of two events EM1 and EM2. The
syntax of TestcomplementaryEarly operator is the
following:

<testcom>::=TestcomplementaryEarly(<expr>,
<expr>,<expr>,<expr>)

The tester can use TestcomplementaryEarly (EM1,
EM2, TaskTM1M2, tw) and the behavior of this
operator is as follows:

1.begin
2.EM1_out = select top 1 EM1 from U_ACTIONS
where(time between (now()–tw) and now ())
order by time desc
3.EM2_out = select top 1 EM2 from U_ACTIONS
where(time between (now()–tw) and now ())
order by time desc
4.T_out = select distinct Tout from
U_ACTIONS
5.if ((EM1== EM1_out) and (EM2 == EM2_out)
and(T_out ==taskTM1M2)) then
6. output (“EM1 and EM2 are complementary”);
7.else
8. begin
9. output (“EM1 and EM2 are complementary”);
10. stop program;
11. end
12.end

EM1_out and EM2_out are the last events
occurred in the Temporal Window. T_out is the task
occurred in the Temporal Window. The
Complementarity of two events EM1 and EM2 is tested
by condition (line 5): ((EM1 == EM1_out) and (EM2
== EM2_out)and (T_out ==task)). If EM1 and EM2
are last events in TW and Tout is the taskTM1M2
then EM1 and EM2 are complementary. Table 4 shows
an extract example of the execution trace resulting
from TestComplementaryEarly (Speech_T1,
Mouse_T2, Task12, 5) with Tw = 5.

Table 4: The result of TestComplementaryEarly.

Time EM1 EM2 Tout TestComplemen_
taryEarly

1
2
3
4
5

Speech_T1

Speech_T1
Speech_T1

Mouse_T2

Mouse_T2

TaskT12

Speech_T1,
Mouse_T2 are
complememtary

4 TESTING THE MEMO
APPLICATION

The TESTCTT model of Memo is built through four
steps: (1) selecting a test target; (2) designing

Testing Multimodal Interactive Applications by Means of the TTT Language

29

notations of activity in the model; (3) designing the
state variables and selecting data types for variables;
(4) writing test scripts for each activity. Figure 5
presents a part of this test model.
1. TESTCTT Memo;
2. VAR
3. q0, q1, q2, q3, q4 : bool;
4. T, Tout: char;
5. tw : integer;
6. begin
7. INIT (Tout=’D’)
8. do
9. begin
10. q0=(Tout<>'D' and Tout <> 'C' and T <>'o');
11. q1=(T=='o')or(Tout=='G'and T =='g') or

(Tout=='R'andT=='r')or(Tout=='S'and T=='s');
12. q2 = (Tout=='D');
13. q3 = (Tout=='C');
14. if (q0)
15. begin
16. T = Choice(‘o’,’’,0.5, note_nb()=0,1,
17. note_nb()>=5,0.1);
18. insert into U_ACTIONS(input) values(T);
19. end
20. if (q1)
21. begin
22. T = Choice((‘o’ ,’’,0.5, note_nb()=0,1,
23. note_nb()>=5,0.1);
24. insert into U_ACTIONS(input) values(T);
25. end
26. if (q2)
27. begin
28. T = choice('g' ,'r',0.8,note_nb()=0, 1,

note_nb()>=5,0.1);
29. if T =’g’
30. begin
31. tw=1;
32. do
33. begin
34. Modalities(Speech_get,Mouse_get,
35. 0.3,0.7,note_nb()=0 ,0,0,
36. note_nb()>=5,0.2,0.8);
37. Tout = call_Memo(T);
38. Insert into U_ACTIONS(M1,M2,input,
39. output)values(Speech_get,Mouse_get,T,
40. Tout);
41. Tw =tw+1;
42. end
43. while (tw<=3)
44. TestRedundantEquivalenceEarly_
45. (Speech, Mouse, get, 3)
46. end
47. else
48. begin
49. Tw=1;
50. do
51. begin
52. Modalities(Speech_remove,Mouse_remove,
53. 0.8,0.9,note_nb()=0,0,0,
54. note_nb()>=5,0.9,0.7);
55. Tout = call_Memo(T);
56. insert into U_ACTIONS(M1, M2,

input, output) values(Speech_remove,
Mouse_remove,T,Tout);

57. Tw=tw+1;
58. end
59. while (tw<=3);
60. TestRedundantEquivalenceEarly_
61. (Speech, Mouse, remove, 3);
62. end;
63. while (T<>’E’);
64. end
65. FUNCTION note_nb() returns (note_nb: int);
66. varget_nb, remove_nb :int;
67. begin
68. get_nb= select count(*) from U_ACTIONS where

input =”g”;

69. remove_nb= select count(*) from U_ACTIONS where
input =”r”;

70. note_nb= get_nb- remove_nb
71. end

Figure 5: The test model for Memo in TTT.

Based on the rules described in section 5, the
TESTCTT model is transformed into a C program.
After the translation is completed, the C program is
compiled and executed to generate test data.Table 5
shows an extract of the execution trace and the result
of TestRedundantEquivalenceEarly(lines 43,59).

Table 5: An extract of the execution trace and the result of
TestRedundantEquivalenceEarly.

Time EM1 EM2 TM1M2 Output

1 Move M_Displayed

2 Speech_get Get M_Taken

3 Mouse_get

4 Mouse_get

5 Move M_Display

6 Speech_remove Remove M_Remove

7 Mouse_remove Remove M_Remove

In line 1, the user moves and a note appeared
(M_Displayed). The test generator produces input
data Speech_get (choice between get or
remove in the state q2). In lines (2, 3, 4) because of
the redundancy mode, the user actions
Speech_get, Mouse_get are sent through the
Memo causing only one action Get and Memo
returns output M_Taken (line 2). The test generator
calculates and determines the application is in state
q1. In state q1, TESTCTT model generates input
data move (choice between move or "-" in the state
q1). When the user moves, a note appeared on the
Memo (M_Display) (line 5). The user removes
this note (lines 6,7). The user actions
Speech_remove, Mouse_remove are sent to
Memo causing two actions Remove and Memo
returns two outputs M_Remove. So
Mouse_remove, Speech_re–move are not
Redundant-Equivalent, therefore the C program
stops the Memo application and displays a message
“Mouse_remove and Speech_remove are not
Redundant-Equivalent”.

5 CONCLUSIONS

IMA are intuitive, natural, efficient, and robust. The
flexibility and robustness of multimodal applications

AMARETTO 2016 - International Workshop on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

30

are increasing the complexity of the design,
development and testing. We have built a new
modelling language TTT to test interactive
applications. For multimodal applications, we have
extended the TTT language to solve two problems:
generating test data and checking CARE properties.
We defined a new operator Modalities to generate
tests for multimodal events. The CARE properties
are tested by the TestEquivalence,
TestRedundant_EquivalenceEarly and
TestcomplementaryEarly operators.

REFERENCES

Cortier, A., D’Ausbourg, B., and Aıt-Ameur, Y., 2007.
Formal validation of java/swing user interfaces with
the event B method. In HCI (1), pages 1062–1071.

Dittmar, A., 2000. More precise descriptions of temporal
relations within task models. In Interactive
Applications: Design, Specification, and Verification,
7th International Workshop DSV-IS, Proceedings,
pages 151–168, Limerick, Ireland.

Bouchet, J., Madani, L., Nigay, L., Oriat, C. and Parissis,
I. 2007. Formal testing of multimodal interactive
systems. In EIS’2007 Engineering Interactive Systems,
Salamanca, Spain, 36-52.

D’Ausbourg, B., 1998. Using model checking for the
automatic validation of user interface systems. In
Design, Specification and Verification of Interactive
Systems’98, Proceedings of the Fifth International
Eurographics Workshop, pages 242–260, Abingdon,
United Kingdom.

Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J.
and Young, R. M. 1995. Four easy pieces for
assessing the usability of multimodal interaction: the
care properties. In INTERACT, 115-120. Chapman &
Hall.

Du Bousquet, L., Ouabdesselam, F., and Richier, J.-L.
1998. Expressing and implementing operational
profiles for reactive software validation. In 9th
International Symposium on Software Reliability
Engineering, Paderborn, Germany.

Duke, D. J. and Harrison, M. D., 1993. Abstract
interaction objects. Computer Graphics Forum,
12(3):25–36.

Paternò, F. and Faconti, G., 1993. On the use of LOTOS
to describe graphical interaction. In HCI’92:
Proceedings of the conference on People and
computers VII, pages 155–173, New York, NY, USA.
Cambridge University Press.

Bouchet, J., and Nigay, L., 2004. ICARE: a component-
based approach for the design and development of
multimodal interfaces. In Extended abstracts of the
2004 Conference on Human Factors in Computing
Systems, CHI 2004, pages 1325–1328, Vienna,
Austria, 24 - 29.

Le TL., Nguyen TB, Parissis I., 2013. A New Test
Modeling Language for Interactive Applications
Based on Task Trees, In Proceedings of the 4th
International symposium on information and
communication Technology, pp.285-293.

Le TL., Nguyen TB., Parissis, I., 2014. A solution of
generate test data for interactive applications, In
Proceedings of the 7th National Conference on
Fundamental and Applied Information Technology
Research (FAIR’7), pp.134-143.

Madani, L. and Parissis, I. 2009. Automatically testing
interactive applications using extended task trees. J.
Log. Algebr. Program., 78(6):454-471.

Madani, L., Oriat, C., Parissis, I., Bouchet, J., and Nigay,
L., 2005. Synchronous testing of multimodal systems:
An operational profile-based approach. In 16th
International Symposium on Software Reliability
Engineering (ISSRE 2005), pages 325–334, Chicago,
IL, USA, 8-11.

Madani, L. and Parissis, I., 2011. Automatically testing
interactive multimodal systems using task trees and
fusion models. In 6th international workshop on
Automation of software test (AST '11), Hawai, USA.

Du Bousquet, L., Ouabdesselam, F. , Richier, J.-L. and
Zuanon, N., 1999. Lutess: a specification driven
testing environment for synchronous software. In 21st
International Conference on Software Engineering,
pages 267-276. ACM Press.

Musa, J. 1993. Operational Profiles in Software-Reliability
Engineering. IEEE Software, 14–32.

Palanque P., Bastide R., 1995. Verification of Interactive
Software by Analysis of its Formal Specification.
INTERACT'95, Norway.

Richard K. Shehady and Daniel P. Siewiorek, 1997. A
method to automate user interface testing using
variable finite state machines. In FTCS ’97:
Proceedings of the 27th International Symposium on
Fault-Tolerant Computing (FTCS ’97), page 80,
Washington, DC, USA, 1997. IEEE Computer
Society.

Aıt-Ameur, Y. and Kamel, N., 2004. A generic formal
specification of fusion of modalities in a multimodal
HCI. In Rene Jacquart, editor, IFIP Congress Topical
Sessions, pages 415–420. Kluwer, 2004.

Ter Beek, M.H., Faconti, G.P. Massink, M., Palanque,
P.A. and Winckler, M., 2009. Resilience of Interaction
Techniques to Interrupts: A Formal Model-Based
Approach. In Human-Computer Interaction -
INTERACT 2009: Part I of the Proceedings of the
12th IFIP TC 13 International Conference on Human-
Computer Interaction (INTERACT'09), Uppsala,
Sweden (T. Gross et al., eds.), Lecture Notes in
Computer Science 5726, Springer, Berlin, 494-509.

Paternò, F., Mancini, C., and Meniconi, S., 1997.
ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models. In Proceedings of the 6th
IFIP TC 13 International Conference on Human-
Computer Interaction (INTERACT'97), Sydney,
Australia (S. Howard, J. Hammond, and G. Lindgaard,
eds.), Chapman & Hall, Boca Raton, 362-369.

Testing Multimodal Interactive Applications by Means of the TTT Language

31

Palanque, P., Winckler, M., Ladry, J.-F., Ter Beek, M.H.,
Faconti, G., and Massink, M., 2009. A Formal
Approach Supporting the Comparative Predictive
Assessment of the Interruption-Tolerance of
Interactive Systems. In Proceedings of the ACM
SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS'09), Pittsburgh, PA, USA
(G. Calvary, T.C.N. Graham, and P. Gray, eds.), ACM
Press, 211-220.

Kamel, N. and Aït Ameur, Y., 2007. A Formal Model for
CARE Usability Properties Verification in Multimodal
HCI. In Proceedings of the IEEE International
Conference on Pervasive Services (ICPS'07), Istanbul,
Turkey, IEEE Computer Society, 341-348.

Kamel, N., Aït Ameur, Y., Selouani, S.-A. and Hamam,
H., 2008. A formal model to handle the adaptability of
multimodal user interfaces. In Proceedings of the 1st
International ICST Conference on Ambient Media and
Systems (AMBI-SYS'08), Quebec, Canada (B. Liang
and R.M. Whitaker, eds.).

Mohand-Oussaïd, L., Aït-Sadoune, I., Aït Ameur, Y., and
Ahmed-Nacer, M., 2015. A formal model for output
multimodal HCI - An Event-B formalization.
Computing 97, 713-740.

AMARETTO 2016 - International Workshop on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

32

