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Abstract: The 1/N portfolio represents a simple strategy to invest money in the stock market. Investors who follow this
strategy invest an equal proportion of their investment budget in each stock from a given investment universe.
Empirical results indicate that this strategy leads to competitive results in terms of risk and return compared to
more sophisticated strategies. However, in practice, investing in allN stocks from a given investment universe
can cause substantial transaction costs ifN is large or if the market is illiquid. The optimization problem
considered in this paper consists of optimally replicating the returns of the 1/N portfolio by selecting a small
subset of theN stocks, and determining the respective weight for each selected stock. For the first time, we
apply the concept of iterated greedy heuristics to this novel portfolio-optimization problem. For analyzing
the performance of our heuristic approach, we also formulate the problem as a mixed-integer quadratic pro-
gram (MIQP). Our computational results indicate that, within a limited CPU time, our heuristic approach
outperforms the MIQP, in particular when the number of stocksN grows large.

1 INTRODUCTION

Stock-investment strategies aim at constructing port-
folios of stocks that maximize the expected return for
a given level of risk. Besides good risk-return charac-
teristics, a desirable property of an investment strat-
egy is low expenses for, e.g., transaction costs or in-
vestment research.

The 1/N portfolio represents an investment strat-
egy that delivers good risk-return characteristics at
low investment-research costs. An investor who fol-
lows the 1/N strategy invests an equal proportion of
the available budget in each of theN stocks from
a given investment universe. In an empirical anal-
ysis, (DeMiguel et al., 2009) showed that this sim-
ple strategy performed competitive in terms of risk
and return compared to other more sophisticated in-
vestment strategies like the mean-variance approach
(Markowitz, 1952) and extensions thereof. However,
applying the 1/N strategy can lead to substantial trans-
action costs if the investment universe consists of a
large number of stocks or if the market is illiquid.

The planning problem considered in this pa-
per consists of selecting a small subset of theN
stocks and determining each selected stock’s portfo-
lio weight such that the resulting tracking portfolio
minimizes the variance of the expected return differ-
ences (cf. (Roll, 1992)) between the tracking portfo-
lio and the 1/N portfolio at low transaction costs. The

following constraints must be fulfilled by the tracking
portfolio: The number of different stocks to be in-
cluded in the tracking portfolio is limited, the weight
of each selected stock must be within a specific range,
the whole budget must be invested, and short selling
is not allowed. We do not explicitly consider trans-
action costs, but implicitly limit the transaction costs
by limiting the number of stocks to be included in the
portfolio.

To the best of our knowledge, this planning prob-
lem has not been discussed in the literature. How-
ever, the 1/N portfolio can be interpreted as a stock-
market index with equal weights for each stock, and
therefore, so-called index-tracking methods known
from the literature (cf., e.g., (Beasley et al., 2003;
Canakgoz and Beasley, 2008; Guastaroba and Sper-
anza, 2012)) can be applied. However, in general,
a financial index consists of stocks with different
weights, and general index-tracking methods do not
take these weights into account.

In this paper, we present a heuristic approach to
the planning problem stated above. To obtain a pure
combinatorial optimization problem, we only con-
sider tracking portfolios where each stock has the
same weight. We propose an iterated greedy heuris-
tic (cf., e.g., (Ruiz and Stützle, 2007)) that runs as
follows. First, a feasible portfolio is constructed by
applying a novel greedy insertion heuristic. Then, an
improvement phase runs until some termination cri-
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terion is met; this improvement phase consists of a
deconstruction and a construction sub-phase. Dur-
ing the deconstruction sub-phase, some randomly se-
lected stocks are deleted from the current solution. In
the construction sub-phase, stocks are added to the
portfolio by applying the greedy insertion heuristic
that has also been used to construct the initial solu-
tion. New solutions are accepted or discarded based
on an acceptance criterion that can also be satisfied for
worse solutions with a small probability. Because our
paper is the first that considers the problem of track-
ing the 1/N portfolio, we also formulate the problem
as a mixed-integer quadratic program (MIQP) to an-
alyze the performance of our heuristic approach. We
used a standard commercial solver for the solution of
the MIQP. For a set of 23 test instances obtained from
real-world stock-market data, it turned out that, in par-
ticular for the larger instances, our iterated greedy
heuristic (IGH) devises better solutions within less
CPU time.

The paper is organized as follows. In Section 2,
we state the decision problem. In Section 3, we pro-
vide a short overview on the literature on index track-
ing and on iterated greedy heuristics. In Section 4,
we present our iterated greedy heuristic approach. In
Section 5, we report on our computational results. In
Section 6, we give some concluding remarks and an
outlook on future research.

2 PLANNING PROBLEM

The planning problem considered in this paper con-
sists of constructing a portfolio composed of a small
subset of theN stocks from a given investment uni-
verse to reproduce the returns of the 1/N portfolio.
More specifically, we want to construct a portfolio
that has the lowest possible variance of the relative
returns (VRR), where the relative returns correspond
to the differences between the returns of the tracking
and the 1/N portfolio. A lower VRR means more sta-
ble relative returns over time and therefore a smaller
risk of having large return differences in single peri-
ods. (Roll, 1992) formulates the problem of minimiz-
ing the VRR between a tracking portfolio and some
market index using the following quadratic objective
function of the decision variablesxi representing the
portfolio weights of each stocki in the tracking port-
folio, the weightswi of each stocki in the index, and
the covariancesσi j between the returns of stocki and
j (see Table 1 for the nomenclature):

Min.
N

∑
i=1

N

∑
j=1

σi j (xi −wi)(x j −wj) (1)

Table 1: Nomenclature for the MIQP.

Parameters
N Number of available stocks
k Maximum cardinality of the portfolio
δi > 0 Maximum weight of stocki if included

in the tracking portfolio
εi > 0 Minimum weight of stocki if included

in the tracking portfolio
σi j Covariance between returns

of stocki and j
wi Weight of stocki in the index (= 1

N )

Decision variables
xi Weight of stocki in the portfolio

zi

{
= 1, if xi > 0
= 0, otherwise

To construct a portfolio that tracks the 1/N portfo-
lio, we replace the index weightswi by 1

N . The follow-
ing constraints are considered: The maximum num-
ber of stocks to include in the tracking portfolio must
not exceed a prescribed value ofk, and each stock in-
cluded in the portfolio is required to have a weight
within the predefined range[εi ,δi ], i = 1, . . . ,N. This
range should include1k such that we are able to con-
struct a portfolio ofk stocks, each with a weight of
1
k . Assigning a weight of1k to each included stock
leads to good tracking portfolios according to (Fiter-
man and Timkovsky, 2001), who argue that a stock
included in the portfolio should have a relative weight
that is proportional to its relative weight in the origi-
nal index, i.e., to1

N . Finally, we must invest the whole
budget, and short selling is not possible. We obtain
the following mixed-integer quadratic program:

MIQP





Min.
N
∑

i=1

N
∑
j=1

σi j (xi − 1
N )(x j − 1

N ) (2)

s.t.
N
∑

i=1
xi = 1 (3)

N
∑

i=1
zi ≤ k (4)

εizi ≤ xi ≤ δizi (i = 1, . . . ,N) (5)
xi ≥ 0,zi ∈ {0,1} (i = 1, . . . ,N) (6)

The objective function (2) corresponds to the VRR
between tracking and 1/N portfolio. Constraint (3)
ensures that the whole budget is invested, and con-
straint (4) limits the total number of stocks to include
in the tracking portfolio tok. The binary decision
variableszi are used to formulate the cardinality con-
straint (4). Constraints (5) both guarantee that the bi-
nary variableszi are equal to one if and only if the
portfolio weightxi is greater than zero, and that the
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portfolio weightsxi are within the range[εi ,δi ] if and
only if zi = 1. Finally, constraints (6) specify the do-
mains of the decision variableszi andxi .

3 RELATED LITERATURE

To the best of our knowledge, there is no specific liter-
ature on the planning problem described in Section 2.
However, since we can interpret the 1/N portfolio as
a special index with equal weights for each stock, the
returns of the 1/N portfolio could be replicated by ap-
plying index-tracking methods. Index-tracking meth-
ods are applied to replicate the returns of large market
indices with a small set of stocks to save transaction
costs. In Subsection 3.1, we give an overview on the
literature on index tracking. In Subsection 3.2, we
summarize the literature on iterated greedy heuristics.

3.1 Index Tracking

Index-tracking methods are applied to solve the
index-tracking problem, which consists of construct-
ing a portfolio that best-possibly replicates the index
returns by investing in a small subset of some set of
stocks. With the exception of (Roll, 1992), most ap-
proaches to the index-tracking problem assume that
the true index weights are unknown. For example,
(Beasley et al., 2003) develop an evolutionary heuris-
tic to the index-tracking problem. They minimize
some function of the differences between the portfo-
lio and index returns and consider various practical
portfolio constraints such as a maximum number of
stocks to include in the portfolio, minimum and max-
imum weights for each included stock, and a budget
for transaction costs. (Canakgoz and Beasley, 2008)
develop a regression-based approach for the index-
tracking problem. Their objective is to construct a
portfolio that has an intercept of zero and a slope of
one when regressing the portfolio returns on the in-
dex returns. They consider similar practical portfolio
constraints as (Beasley et al., 2003). (Guastaroba and
Speranza, 2012) present a mixed-integer linear pro-
gram as well as a MIP-based heuristic called Kernel
Search for the index-tracking problem. They consider
similar practical portfolio constraints as (Canakgoz
and Beasley, 2008), but additionally consider fixed
transaction costs. By assuming the true index weights
to be unknown, these approaches have the advantage
that they can be applied to track any index by select-
ing a subset of stocks from any set of stocks, even if
the index is not composed of this set of stocks.

3.2 Iterated Greedy Heuristics

Iterated greedy heuristics start by constructing an ini-
tial solution. This solution is then improved dur-
ing an improvement phase that consists of the two
sub-phases deconstruction and construction (Ruiz and
Stützle, 2007). During the deconstruction sub-phase,
some elements of the current candidate solution are
removed. In the construction sub-phase, a new can-
didate solution is constructed by adding elements in
a greedy way back to the deconstructed solution.
The new candidate solution is then either accepted
or discarded based on a specific acceptance crite-
rion. To escape local minima, the acceptance crite-
rion is designed such that also worse solutions are ac-
cepted with some probability. By repeating the decon-
struction and construction sub-phases, iterated greedy
heuristics overcome the drawbacks of a simple greedy
heuristic such as those mentioned in (Gutin et al.,
2002).

Iterated greedy heuristics are simple to understand
and easy to implement in practice, yet very effective
in providing high quality solutions for various prob-
lems. For example, (Jacobs and Brusco, 1995) apply
IGH to the set covering problem. (Ruiz and Stützle,
2007) and (Ruiz and Stützle, 2008) demonstrate the
effectiveness of iterated greedy heuristics for vari-
ants of the flowshop problem. IGH is also applied
to the unrelated parallel machine scheduling problem
(Fanjul-Peyro and Ruiz, 2010). However, to the best
of our knowledge, iterated greedy heuristics have not
been applied to portfolio-optimization problems.

4 ITERATED GREEDY
HEURISTIC

In this section, we present our iterated greedy heuris-
tic, which is based on an IGH developed for the
permutation flowshop scheduling problem (Ruiz and
Stützle, 2007). In Subsection 4.1, we give an
overview on the design of our IGH. In Subsection 4.2,
we present the greedy insertion heuristic that is used
as a subroutine in our IGH.

4.1 Overview

For our iterated greedy heuristic to track the 1/N port-
folio, we made two simplifications: (1) We always
include as many stocks as possible (= k) in the track-
ing portfolios, and (2) each stock in the portfolio has
the same weight (= 1

k ). These simplifications allow
us to save the CPU time required for determining the
portfolio weights of each stock, e.g., by solving a
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quadratic program. We assume that for all instances
εi ≤ 1

k ≤ δi , i = 1, . . . ,N, i.e., a portfolio weight of1k
for every stock is feasible (cf. Section 2).

Our iterated greedy heuristic proceeds as follows
(cf. Algorithm 1): We start with an empty portfolioπ,
where all stocks have a portfolio weight of zero. We
then greedily addk stocks with a weight of1k to π by
applying the greedy insertion heuristic discussed in
Subsection 4.2 such that the objective function value
by adding one new stock declines the most. The best
known solution is stored inπb and will be outputted
at the end of Algorithm 1.

Algorithm 1: Iterated greedy heuristic (IGH).

π := /0;
for i := 1 to k do

Add best stock to portfolioπ with weight 1
k by

applying Algorithm 2
πb := π;
while termination criterion not satisfieddo
{Improvement phase}

π′ := π
p := ⌊random∗d⌋+1
for i := 1 to p do {Deconstruction sub-
phase}

remove a randomly selected stock from
portfolio π′

for i := 1 to p do {Construction sub-phase}
Add best stock to portfolioπ′ with
weight 1

k by applying Algorithm 2
if VRR(π′)<VRR(π) then

π := π′;
if VRR(π)<VRR(πb) then

πb := π;
else

if random≤ e−
VRR(π′ )−VRR(π)

temp then
π := π′;

returnπb;

After having found an initial solution, Algorithm 1
enters the improvement phase and tries to improve
πb until some termination criterion is met, e.g., un-
til the limit on total CPU time is reached. From the
current solution,p random stocks are removed dur-
ing the deconstruction sub-phase, wherep is calcu-
lated as⌊random∗ d⌋+ 1. The parameterd denotes
the maximum number of stocks to remove. Because
random is a uniformly distributed random number
in the interval[0,1), p is a uniform random integer
from the set{1, . . . ,d}. During the construction sub-
phase,p stocks are added back to the portfolio with
a weight of 1

k . Thesep stocks are selected greedily
by applying our greedy insertion heuristic (cf. Sub-

section 4.2). The new portfolioπ′ is then compared
to the old portfolioπ before removing and adding
back p stocks. If the solutionπ′ is better thanπ, the
new portfolio is immediately accepted as new solu-
tion. Algorithm 1 then also checks if the new port-
folio improves the best known solutionπb. If this
is the case,πb is updated. With some probability,
the solutionπ′ is accepted as new solution even if
it is worse thanπ. Due to the greedy nature of our
heuristic, Algorithm 1 could be trapped in a local min-
imum if only better solutions were accepted (John-
son et al., 1989). Therefore, worse solutions are ac-
cepted with a small probability to enable Algorithm 1
to escape such local minima. The probability to ac-
cept worse solutions depends on the parametertemp,
which can be interpreted as the temperature used in
simulated annealing heuristics (Johnson et al., 1989;
Johnson et al., 1991). To compare the objective func-
tion values (VRR(π),VRR(π′),VRR(πb)) of the solu-
tions, Algorithm 1 does not actually evaluate the ob-
jective function, but uses the information about the
possible improvement in the objective function value
for adding a given stock. This information is gener-
ated by Algorithm 2, which is presented in the follow-
ing subsection.

4.2 Greedy Insertion Heuristic

In this subsection, we explain the greedy insertion
heuristic that is used both to add back stocks to the
portfolio during the construction sub-phase and to
construct an initial solution at the beginning of the
IGH. A naive approach to find the best stock to add
to a current portfolio would proceed as follows: For
each stock that has not been selected yet, a portfo-
lio is constructed by adding the stock to the current
portfolio with a weight of 1

k . Then, the objective
function value is computed by using (2) for each of
these portfolios. The stock that leads to the portfo-
lio with the lowest objective function value is then
selected. To calculate the objective function value
for a given portfolio,N2 times two subtractions and
three multiplications need to be performed, i.e., in to-
tal 5N2 floating point operations (flops). If the cur-
rent portfolio includesm stocks, this approach needs
5N2(N−m) = 5N3 − 5N2m flops to select the best
stock.

However, by applying Algorithm 2, the best stock
can be found in a more efficient way, i.e., in 2N2 −
2Nmflops. To see this, assume that we want to calcu-
late the possible improvement in the objective func-
tion value if we increase the weight of some stockj ′

that has not been selected yet from 0 to1
k . The only

summands in the objective function affected by this
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change are:

σ j ′ j ′(x j ′ −
1
N
)2+

∑
i∈{1,...,N}\ j ′

[σi j ′(xi −
1
N
)(x j ′ −

1
N
)]+

∑
i∈{1,...,N}\ j ′

[σ j ′ i(x j ′ −
1
N
)(xi −

1
N
)]

≡ σ j ′ j ′(x j ′ −
1
N
)2+

2 ∑
i∈{1,...,N}\ j ′

[σi j ′(xi −
1
N
)(x j ′ −

1
N
)]

(7)

Because the covariance matrix is symmetric, i.e.,
σi j = σ ji , i, j ∈ {1, . . . ,N}, the two sums in (7) are
equal. If we add stockj ′ to the portfolio, there are
three different cases how the summands in (7) are af-
fected.

1. Consider some stocki 6= j ′ that has not been se-
lected yet. The contribution to (7) of the two
stocksi and j ′ before adding stockj ′ to the port-
folio is 2σi j ′(0− 1

N )(0− 1
N). After changing the

weight of stock j ′ from 0 to 1
k , this contribu-

tion changes to 2σi j ′(0− 1
N )(

1
k − 1

N ). So, the im-
provement can be calculated as the difference be-
tween these two contributions and corresponds to
2σi j ′
Nk . In Algorithm 2, we usew1 = 2

Nk as fac-
tor to weight the covariances that belong to this
first case to compute the possible improvement for
stock j ′.

2. Consider some other stocki 6= j ′ that has al-
ready been selected and thus, has a weight of
1
k in the portfolio. Therefore, the contribution
of the stocksi and j ′ to the objective function
value before changing the weight of stockj ′ is
2σi j ′(

1
k − 1

N)(0− 1
N ), and becomes 2σi j ′(

1
k − 1

N )
2

after changing the weight of stockj ′. So, the dif-
ference is 2σi j ′(

1
kN − 1

k2 ). In Algorithm 2, we use

w2 = w1 − 2
k2 to weight the covariances for this

second case.

3. The variance of the returns of stockj ′ contributes
as follows to the objective function value before
changing its weight:σ j ′ j ′(0− 1

N )
2. After adding

stock j ′ to the portfolio, the contribution trans-
forms to σ j ′ j ′(

1
k − 1

N)
2. So, the difference is

σ j ′ j ′(
2

kN − 1
k2 ). For this third case, we use the

weightw3 = w1− 1
k2 in Algorithm 2.

In total, to compute the possible improvement for
increasing the weight of stockj ′ from 0 to 1

k , we can
use Algorithm 2 that multiplies the covariances be-
tween the returns of stockj ′ and stocksi ∈ {1, . . . ,N}

with the respective weightsw1, w2, or w3. The
weighted covariances are then added up to calculate
the total improvement. So, in total, this takesN mul-
tiplications andN additions (ignoring the flops to cal-
culate the weightsw1,w2,w3). Therefore, to select the
best stock from theN−m stocks that have not been
selected yet, i.e., the stock that leads to the largest de-
cline ω∗ in the objective function value, Algorithm 2
takes 2N2−2Nmflops.

Algorithm 2: Greedy insertion heuristic.

π′ := current portfolio (input);
w1 := 2

Nk;
w2 := w1− 2

k2 ;

w3 := w1− 1
k2 ;

ω∗ :=−∞
for j := 1 to N do

if stock j has a weight of 0 inπ′ then
ω := 0
for i := 1 to N do

if i = j then
ω := ω+w3σi j ;

else
if stocki has a weight of 0 inπ′

then
ω := ω+w1σi j ;

else
ω := ω+w2σi j ;

if ω > ω∗ then
ω∗ := ω
j∗ := j

return j∗ andω∗;

5 COMPUTATIONAL
EXPERIMENT

We tested our iterated greedy heuristic on a set of
test instances generated from real-world stock-market
data, and compared the best results obtained by the
heuristic to those obtained by the MIQP. In Subsec-
tion 5.1, we present the test instances. In Subsec-
tion 5.2, we explain the test setting. In Subsection 5.3,
we report on the computational results.

5.1 Test Instances

In total, we used 23 test instances for our computa-
tional experiment (cf. Table 2). We generated the first
eight of these instances from index-tracking bench-
mark instances that can be downloaded from the OR-
Library (Beasley, 1990). We constructed 15 further
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Table 2: Test instances.

Number of stocks
Nr. Index N k
1 Hang Seng 31 10
2 DAX100 85 10
3 FTSE100 89 10
4 S&P100 98 10
5 Nikkei225 225 10
6 S&P500 457 40
7 Russell2000 1,319 70
8 Russell3000 2,152 90
9 SMI 20 10
10 Hang Seng 49 10
11 EUROSTOXX50 50 10
12 FTSE100 96 10
13 S&P100 99 10
14 NASDAQ100 101 10
15 DAX100 102 10
16 SPI 198 10
17 Nikkei225 220 10
18 S&PASX300 254 10
19 S&P500 489 40
20 FTSE All Share 567 40
21 STOXXEURO600 575 40
22 S&P1200 1,179 70
23 Nasdaq Composite 2,140 90

test instances from real-world stock-market indices in
the same way as (Beasley, 1990). Each of the 23 in-
stances represents a specific investment universe com-
posed ofN stocks, and consists of the weekly prices
of all the stocks that constitute the given market index
and do not have any missing prices. The 1/N portfo-
lio is then composed of each of theseN stocks with a
weight of 1

N for each stock, and can be seen as an ar-
tificial index that is equally weighted and rebalanced
every week. The objective is to replicate the returns
of this artificial index.

5.2 Test Setting

For our computational experiments, we defined the
specific values for the different parameters from Ta-
ble 1 as follows. The number of stocks in the in-
vestment universe (N) depends on the specific test
instance and is depicted in Table 2. This table also
shows the maximum number of stocks to include in
a tracking portfolio (k) for each instance. For the
first eight instances, we used the same values fork
as (Guastaroba and Speranza, 2012), whose objective
was to track the original market index. For the re-
maining 15 instances, the correspondingk of the first
eight instances with a similar sizeN was used. As
lower and upper limits on the portfolio weights for

each stock included in the tracking portfolio, we used
a minimum weight of 0.5% (εi = 0.005,i = 1, . . . ,N)
and a maximum weight of 20% (δi = 0.2, i = 1, . . . ,N)
for each instance. These values allowed us to con-
struct tracking portfolios composed ofk stocks with
a weight of 1

k for all instances. The covariances be-
tween the returns of the stocksσi j (i, j = 1, . . . ,N)
were computed based on the historical stock returns
over a time window of 104 weeks. Since the result-
ing MIQP is only convex if the matrix of covariances
is positive semi-definite, we use the covariance esti-
mator developed by (Ledoit and Wolf, 2004) that al-
ways yields a positive semi-definite covariance ma-
trix (even if a test instance contains more stocks than
weekly prices). The last parameter in Table 1 is the
weight of each stock in the artificial index we want to
replicate (wi , i = 1, . . . ,N). Because our target index
corresponds to the 1/N portfolio, we used1

N for this
parameter.

Furthermore, we had to define the parametersd
and temp that are relevant for the iterated greedy
heuristic only. For the maximum number of stocks
d to remove and add during the deconstruction and
the construction sub-phase, we tested the four values
2,3,4,5 for all instances. For the largest instances
with N > 500 andk ≥ 40, we also tested the values
d = 10 andd = 20. For the parametertemp, which
defines the acceptance criterion for new solutions, we
used a constant value of 0.5 for all instances. This
means that we tested four and six different variants
of the iterated greedy heuristic for the smaller and the
larger test instances, respectively.

For the MIQP and the IGH, we limited the CPU
time to 300 and 100 seconds per instance, respec-
tively. For IGH, the 100 seconds CPU time limit were
used as only termination criterion, which means that
the deconstruction and construction sub-phases were
executed repeatedly until this time limit was reached.
We used the Gurobi solver 6.0 to solve the MIQP. The
iterated greedy heuristic was implemented in C (com-
piler: gcc 4.9.3). All computations were performed
on a standard PC with an Intel i7 CPU with 3.4 GHz
and 4 GB RAM.

5.3 Results

Table 3 presents the computational results for the 23
test instances sorted by the number of stocksN in the
instance. Columns three and four show the best ob-
jective function values and the best lower bounds on
the objective function value for the MIQP (scaled by
a factor of 106). Columns five to ten report the results
obtained by the variants of our iterated greedy heuris-
tic. The figures in these columns represent the relative
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Table 3: Computational results.

Instance MIQP IGH with temp= 0.5
N Nr. Best obj. Best bound d = 2 d = 3 d = 4 d = 5 d = 10 d = 20
20 9 9.84 9.84 25.4% 25.4% 25.4% 25.4% − −
31 1 32.92 32.92 18.3% 16.1% 16.1% 18.3% − −
49 10 19.45 12.13 17.0% 17.0% 17.0% 17.0% − −
50 11 18.06 7.86 4.1% 4.1% 4.1% 4.1% − −
85 2 42.04 3.85 −2.1% −2.1% −2.1% −2.1% − −
89 3 47.57 3.39 1.1% −1.0% −1.0% −1.0% − −
96 12 20.99 1.29 8.2% 5.5% 5.5% 5.5% − −
98 4 58.80 2.46 2.9% 0.5% 0.5% 0.5% − −
99 13 16.45 1.08 4.5% 4.5% 4.5% 4.5% − −
101 14 44.91 2.73 6.3% −1.2% −1.2% −1.2% − −
102 15 37.39 1.96 3.0% 0.9% 0.9% 0.9% − −
198 16 147.85 0.84 0.0% 0.0% 0.0% 0.0% − −
220 17 31.08 0.06 2.3% 0.2% 0.2% −0.3% − −
225 5 29.85 0.05 23.9% 20.6% 19.3% 20.0% − −
254 18 116.18 0.27 3.2% −2.8% −3.6% −3.6% − −
457 6 14.74 0.03 −9.7% −9.3% −11.4% −12.2% − −
489 19 4.98 0.01 −11.8% −14.7% −13.9% −14.1% − −
567 20 10.94 0.01 −12.7% −14.8% −15.1% −14.5% −14.2% −12.3%
575 21 8.19 0.01 −7.5% −11.1% −9.2% −12.5% −6.7% −2.5%
1179 22 5.39 0.00 −30.5% −32.2% −31.7% −31.2% −29.7% −26.9%
1319 7 37.75 0.04 −25.2% −26.6% −26.4% −26.7% −26.6% −26.9%
2140 23 44.48 0.01 −22.3% −22.3% −22.3% −22.4% −22.3% −22.3%
2152 8 103.64 0.01 −84.4% −84.5% −84.4% −84.6% −84.4% −84.3%

differences between the best objective function values
obtained by the iterated greedy heuristics (VRR(πb)
from Algorithm 1) and the MIQP (referred to as ofv
MIQP) within the CPU time limits. These relative
differences are computed asVRR(πb)−ofv MIQP

ofv MIQP , and are
negative if IGH obtained better (smaller objective
function value) solutions than the MIQP within the
given CPU times.

For the smaller instances, the Gurobi solver ob-
tained better solutions than the iterated greedy heuris-
tics and could also prove optimality of the solutions
for the two smallest instances. However, with re-
spect to the average over all instances, and in par-
ticular for the larger problem instances, the iterated
greedy heuristic obtained portfolios with a consid-
erably lower objective function value. Over all 23
instances, the variants of the iterated greedy heuris-
tic obtained solutions whose objective function val-
ues were roughly 5% lower than those obtained by
the MIQP. For the larger instances withN > 500 the
average relative difference was approximately−35%.
Furthermore, Table 3 also indicates that the greedy
heuristics delivered good results independently of the
choice for the parameterd.

6 CONCLUSIONS

In this paper, we considered the problem of replicat-
ing the 1/N portfolio by investing only in a subset of
the N stocks from a given investment universe. To
find solutions to this problem, we presented a mixed-
integer quadratic program (MIQP) and developed an
iterated greedy heuristic. In a computational experi-
ment, it turned out that the iterated greedy heuristic
was able to obtain better solutions for the larger in-
stances in shorter CPU time.

In future research, we will evaluate our approach
on a larger set of test instances, and compare the re-
sults of our approach with standard index-tracking ap-
proaches that ignore the actual index weights. Fur-
ther, we will analyze the impact of the minimum
and maximum weights of each stock included in the
tracking portfolio as well as the maximum number of
stocks to invest in. Also, a local search method should
be developed that can be applied to improve the so-
lutions in each iteration of the heuristic. Further-
more, our IGH approach could be extended by relax-
ing the two simplifications that exactlyk stocks with
an equal weight have to be included in a tracking port-
folio; for this purpose, we should apply quadratic pro-
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gramming to determine optimal portfolio weights for
each included stock. According to the result of (Balas
and Saltzman, 1991) that max-regret greedy heuristics
outperform simple greedy heuristics, it could also be
interesting to develop an iterated max-regret greedy
heuristic for the problem considered in this paper.
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