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Abstract: The paper deals with the estimation of gait parameters based on data acquired by inertial measurement units 
(IMU) placed at the middle foot (metatarsus). The developed method described in (Loose and Orlowski, 
2015) is robust against a wide spectrum of the gait speed. The gait parameters (stride duration, length, 
velocity, distance) are calculated stride by stride with excellent quality. This paper is focused on 
experimental data acquired during walking on treadmill with a speed profile. First the robustness of the 
method is shown and quantified using statistical characteristics of each speed level and the whole walking 
distance. Second the determined speed profiles are evaluated against the adjusted speed profile and an 
alternative camera based measurement. Third the influence of the walking speed on various physical and 
statistical stride parameters is discussed. Fourth a model to estimate the walking speed as a function of the 
root mean square of the magnitude of the angular velocity vector is proposed and evaluated. The rms is 
calculated for the acquired sensor data after stride detection for the whole stride. The proposed method is 
applicable to any IMU applied to the metatarsus. 

1 INTRODUCTION 

In the middle of the last century Perry (Perry, 2010) 
and Murray (Murray, 1964) observed, measured and 
analysed the normal and pathological human gait. In 
addition to the graphical representation of the 
normal range of motion Perry published the acquired 
motion data. The gait pattern covers one stride, the 
full period of movement of one leg, one stance and 
one swing phase. The given patterns include motion 
ranges of joint angles (hip, knee and ankle), the 
angle between the thigh and the vertical axis (in the 
sagittal plane).  

During the last decade accelerometers, 
gyrometers as well as integrated inertial 
measurement units became freely available at the 
market: from low cost sensors to relatively 
expensive IMU assembled in small and light weight 
packages. IMU are integrated in most smartphones. 
They provide acceleration data, and more and more 
angular velocity and magnetometer data as well as 
an estimation of orientation. 

In this paper we focus on the estimation of the 
average gait velocity based on statistical stride 
parameters of foot sensors. Based on the data of one 

IMU sensor placed on the metatarsus various gait 
values and parameters are determined:  
• cadence, distance and velocity of motion, 
• characteristics of each or averaged stride like 

initial and terminal point, length, height, width, 
duration of stride, stance and swing phase. 

In addition one-stride statistical parameters like 
minimum, maximum, mean and root mean square of 
these characteristics are calculated. The “average” 
stride is determined after the stride time 
normalization. 

In section II of this paper the used scenarios 
including the experimental setup, the task for the 
cohorts and the evaluation software are described. 
Section III gives an overview about our investigation 
of walking on treadmill with a speed profile. First 
the robustness of the method is shown and 
quantified using statistical characteristics of each 
speed level and the whole walking distance. Second 
the determined speed profiles are evaluated against 
the adjusted speed profile and an alternative camera 
based measurement. Third the influence of the 
walking speed on various physical and statistical 
stride parameters is discussed. Fourth a model to 
estimate the walking speed from measured one-
stride-root mean squares of acceleration and/or 
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angular velocity magnitudes is proposed and 
evaluated. The proposed method is applicable to any 
IMU applied on the metatarsus. A similar idea is 
given in (Juen et al., 2014) in the context of health 
monitoring using mobile phones. Finally we will 
conclude and give an outlook for further 
investigations. It is expected that the method can be 
applied to sensors placed above the ankle or at the 
trunk. It can also be implemented on smart phones. 

2 SYSTEMS AND EXPERIMENTS 

For about five years we have been using sensor 
systems for the acquisition of various motion data. 
Sensors were applied directly to limbs/body were 
tested as well as position measurement systems, 
which are used for comparison in motion data 
acquisition. Since a couple of years we have focused 
on human walking, tried to understand the 
underlying process and to find best positions of 
sensors. Xsens MTw sensors providing strapped 
down data including sensor orientation are used. A 
robust and reliable algorithm which is applicable to 
a wide range of walking scenarios (~2-8 km/h) was 
developed. The algorithm was evaluated on data 
acquired from foot sensors in two main scenarios 
addressed to a large number of healthy subjects. 

2.1 9DOF Xsens MTw Sensors 

The 9DOF Xsens MTw sensor incorporates three 
microelectromechanical sensors: triple-axis 
gyroscope, accelerometer and magnetometer. 
Onboard, the data of the primary sensors are 
sampled at 1800 Hz. Strap-down integration (SDI) is 
used to estimate the orientation with a transfer rate 
of 60 Hz (for seven sensors). They are connected via 
Bluetooth to one Awinda station and the data 
acquisition software “MT Manager”. All involved 
sensors are synchronized with high accuracy (< 10 
�s). The software provides linear acceleration a, 
angular velocity ω, magnetic field m and quaternion 
q. The sensors need calm or slow motion for 
calibration, to determine the initial orientation of the 
sensor with respect to the world coordinate system 
(Roetenberg, Luinge and Slycke, 2009). 

2.2 Experimental Setup 

The sensors are clipped on body straps attached 
similarly to the left and right lower limbs and one in 
the middle of the back. Figure 1 shows two different 
placements of the sensor on the metatarsus. The 

distances of the sensors from the floor as well as the 
length of the limbs are fixed in the experimental 
record of each subject. 

     
Figure 1: Two placements of foot sensors (on the side – 
left, on the top of the foot - right).  

2.3 Scenario 

This paper is focused on human walking on 
treadmill with a stepping-up speed profile over a 
time period of 8 minutes and a distance of about 640 
meters. The speed was increased every minute from 
2 km/h (0.56 m/s) to 8 km/h (2.22 m/s) with a step 
of 1 km/h and after decreased every 30 seconds to 5 
km/h (1.39 m/s) and 2.5 km/h (0.79 m/s). It was 
repeated three times, first after 6 month and second 
after one week. 

An additional test scenario was involved for the 
examination of distance accuracy: Straightforward 
constant walking outdoor on enough long distance 
(~175 m) on a flat and paved ground. The distance 
was measured alternatively with GPS and tape line.  

2.4 Cohorts 

11 volunteers participating in the described treadmill 
scenario experiments were healthy persons between 
32±13 years old, 176±12 cm height, 77±20 kg 
weight and a body mass index of 24±4. All of them 
provided informed consent. 

2.5 Basic Ideas and Algorithms 

The first steps in data processing – digital filtering 
and estimation of the orientation matrix – are 
executed on-board on the sensor (Roetenberg, 
Luinge and Slycke, 2009). Using the delivered 
quaternion the vectors of acquired data are converted 
into the inertial coordinate system CS0 where the z-
axis is vertical and the x-axis is directed to the 
magnetic North. The gravitation force is eliminated 
from acceleration and its integration can be 
separated between the vertical and plane motion. 
CS0 is rotated so that the x-axis coincides with the 
estimated direction of motion. Analysing the gait 
pattern of the foot, i.e. acceleration, angular velocity 
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and foot angle to vertical, gait events are identified 
which allow to detect precisely all gait cycles. While 
Perry (Perry, 2010) defines the beginning of a gait 
cycle at the initial floor contact we place it with 
respect to the needs of integration at mid stance. At 
this moment the foot is not moving, it stands on the 
floor. The initial conditions of the velocities and the 
distances, necessary for integration, are 
predetermined. More details are explained in (Loose 
and Orlowski, 2014 and 2015). The detection of gait 
cycles is executed for both feet.  

2.6 Evaluation Software 

We developed, implemented and tested all 
algorithms in Matlab®, V.: 2014b 
(www.mathworks.com). Figures are mainly 
produced in Matlab®, while tables were mostly 
processed in Microsoft Excel®, V.: 2010 
(www.microsoft.com).  

An editable MATLAB® script is available to 
process experimental data automatically step by 
step. After each step the intermediate results are 
saved. Figures can be created and written to hard 
disc.  

The following steps are included: 
• Preprocessing: reading and reorganizing sensor 

by sensor the acquired data, given in the sensor 
related coordinate system, transformation of 
sensor data into world coordinate system, 
elimination of gravity, calculation of orientation 
relative to the initial one, calculation of angles 
between z-axes of a sensor and the vertical or the 
horizontal plane, calculation of joint angles. 

• Processing: estimation of direction of motion, 
calculation of candidates for gait events, 
plausibility check, determination of gait cycles, 
transformation of data into motion coordinate 
system, integration of acceleration, calculation of 
velocity and position data stride by stride. 

• Postprocessing: calculation of physical and 
statistical characteristics for each stride and the 
whole walking distance, determination of 
average motion. 

• Evaluation: building figures, extracting and 
processing tables. 
The developed algorithm is described in more 

detail in (Loose and Orlowski, 2015). 

3 DISCUSSION AND RESULTS  

In this section results from all scenarios and for all 

sensors are presented. First evaluation results of the 
basic algorithm for both foot sensors in the test 
scenario, followed by the results of standard 
scenarios are listed.  

3.1 Test Scenario 

A quick test scenario was implemented to examine 
the accuracy of the determined distance. On the 
campus a path was identified where the subject 
walked two times a relative long distance 
straightforward on a flat and paved ground. The 
distance was measured with GPS (171-181 m) and a 
classical tape line (174.7 m) what can here used as 
the “gold standard”. The measured distance for the 
right foot is 179,6 m and the left foot 179.4 m, i.e. 
the absolute error is ≈ 5m and relative error < 3 %. 
The subject made 108 strides. The average stride 
duration is 1.03 s, the length 1.66 m, the height 0.12 
m, the width 0.04 m and the speed 1.60 m/s. All 
values are plausible. The result is excellent, but not 
validated yet. 

3.2 Walking on Treadmill 

Eleven subjects participated in the walking on 
treadmill scenario with a speed profile from 2 km/h 
(scuffle) to 8 km/h (rush, jog) stepping 1 km/h. A 
small number of subjects switched from walking to 
jogging when the speed became uncomfortable (> 7 
km/h). This scenario was done by 11 subjects. Seven 
of them executed it once in April and twice in 
October 2015. 46 of 68 data sets acquired from foot 
sensors were analyzed. 12 data sets were corrupted 
(interruption of the data transfer via Bluetooth).  

Sabatini (Sabatini et al., 2005) used a similar 
scenario to assess the determination of walking 
features using inertial foot sensors. 

3.2.1 Evaluation of the Method 

A distance of 643 m was monitored by treadmill; a 
distance of 680 m was determined by a camera 
based control measurement. From all data sets an 
average distance of 682 m was calculated in a range 
from 656 to 702 m. The mean stride speed is 1.52 ± 
0.05 m/s. The number of strides varies between 401 
and 471 and a mean of 441. The variance of the 
walking distance of about ±4% results from 
• a small variation of the walking time and the 

treadmill speed, what was not determined,  
• the intra-subject variance of walking and 
• a systematic error (no filtering of the impact of 

the heel strike) and the variance of the 
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calculation method (limited precision of the 
stride detection of ±16 ms).  

Table 1 and 2 summarize averaged 
characteristics of the gait what were first determined 
for each stride, then averaged over all strides of each 
data set and finally statistically evaluated over all 
data sets.  

Table 1: Averaged over all foot sensor data sets stride 
characteristics (min – minimum, max – maximum, mean – 
mean value, std – standard deviation). 

  averaged stride characteristics 

  
dura-
tion 
[s] 

length 
[m] 

height 
[m] 

width 
[m] 

speed 
[m/s] 

strike 
angle 

[°] 

lift 
angle 

[°] 
min 1,03 1,43 0,08 0,02 1,46 17,97 58,87

max 1,21 1,73 0,17 0,06 1,59 36,32 78,80

mean 1,10 1,55 0,12 0,04 1,52 26,20 71,25
std 0,06 0,08 0,03 0,01 0,04 4,59 4,35

Table 1 shows the duration, length, height, width 
and the velocity of an averaged stride as well as the 
strike and the lift angle of the foot. The variance of 
the stride characteristics over all data sets can be 
explained by different physical properties of 
involved subjects, e.g. their height, leg length and 
level of fitness. 

Table 2: Correlation coefficients of by the stride duration 
normalized measured and average strides. The relevant 
components in the sagittal plane are averaged over all data 
sets (min – minimum, max – maximum, mean – mean 
value, std – standard deviation). 

  correlation coefficient 
  forward sideward vertical 
  acc vel ang. vel. acc vel 
min 0,86 0,94 0,91 0,76 0,88 
max 0,93 0,99 0,97 0,87 0,95 
mean 0,90 0,98 0,94 0,81 0,92 
std 0,01 0,01 0,01 0,03 0,02 

Data summarize in table 2 correlation 
coefficients between each stride execution 
(normalized by the stride duration) and the average 
stride (determined for the data set) and their 
statistically evaluation over all subjects. They reflect 
the small variance of the stride execution in the 
sagittal plane, while the variance in the other 
direction is significant (not shown in the table). By 
the way these results show the excellence of stride 
detection. The best correlation is observed for the 
angular velocity and linear velocities calculated by 
integration of the acceleration, smoothing 
disturbances of the acceleration. The highest 
variance is seen in the vertical component of 

acceleration, what can be explained by the natural 
variance of the vertical movement of the foot and the 
influence of the heel strike which causes an 
additional pulse on the acceleration. 

3.2.2 Evaluation of Stride Velocity 

Every measurement of the treadmill speed can be 
evaluated against the adjusted treadmill speed 
profile. When a subject walks on the treadmill it has 
to adapt its walking to the speed of the treadmill in a 
natural way, i.e. increasing stride length and 
decreasing stride duration at the same time. 
Following the calculated stride velocity for each 
speed level can be interpreted as a measure of the 
treadmill speed.  

All measurements are considered against the 
adjusted speed profile. The results are presented in 
figure 2. The plot shows that there is a very good 
coincidence between the mean stride length and the 
adjusted treadmill speed during stepping-up speed 
(small overestimating) and an underestimation 
during stepping-down speed. In the given speed 
range from 0.5 m/s to 2.3 m/s the differences are less 
than 0.1 m/s during stepping-up speed and twice of 
them during stepping-down speed.  

 
Figure 2: Differences between measured and adjusted 
treadmill speed against their mean. Data of seven subjects 
and the optical system are included. The mean of 
differences is shown as red line, the 1σ-environment as a 
green. 

The beginning of a new speed level was 
automatically detected observing the changes of the 
stride velocity. If the change from one stride to the 
next stride (or the average of a number of strides) is 
higher than a given threshold the beginning of a 
transition phase was registered. The transition phase 
between two levels, where the treadmill speed rises 
up or slows down and the subject tries to adapt to 
changing the treadmill speed, is still added to the 
following level. From this consideration the different 
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effects during stepping up and down speed can be 
explained. 

3.2.3 Influence of the Walking Speed  

In figure 3 the dependency of essential stride 
characteristics like stride length, height, width and 
velocity, strike and lift angle, duration of stride, 
stance and swing on the numbers of steps is 
presented. The number of executed strides 
corresponds to the treadmill speed which was 
changed every 60, later every 30 seconds. It 
increases together with treadmill speed (see subplot 
“stride velocity”). Obviously stride length, height, 
width, strike and lift angle rise with increasing 
speed, while stride, stance and swing duration 
descend. Rising stride velocity is achieved by 
ascending stride length and descending stride 
duration. The relationship between the stance and 
swing phases is changing. The stance phase becomes 
shorter relatively to the swing phase. 

 
Figure 3: Influence of the treadmill speed on stride 
characteristics: length, height, width, velocity, strike and 
lift angle, duration of stride, stance and swing (red – left, 
blue – right leg). 

After any proper stride detection statistical 
characteristics of all available signals can be 
calculated. The determination can be executed for 
each component or any signal vector. For any stride 
the mean, minimum, maximum, median and root 
mean square (one-stride-rms) values as well as the 
standard deviation of all stride characteristics were 
calculated. In figure 4 the rms of the components of 
angular velocity, acceleration and velocity in 
dependence on the number of steps respectively the 

stride velocity is presented. 
Comparing the “stride velocity” (see figure 3) 

with the curves in figure 4 the similarity is obviously 
what was expected for the rms of the stride velocity. 
It can be suggested that there is a relationship 
between the one-stride-rms of the magnitude of the 
acquired linear acceleration/angular velocity vector 
and the forward stride velocity.  

 
Figure 4: Influence of the treadmill speed on the stride by 
stride calculated root mean squares of angular velocity, 
acceleration and linear velocity (brown – sideward, blue – 
forward, ocher - vertical). 

3.2.4 Estimation of Walking Speed 

The relationship between walking speed and RMS of 
the magnitude of the angular velocity vector 
calculated for any whole stride is investigated on the 
case of seven data sets of subjects. In figure 5 the 
calculated for each speed level averaged RMS of 
magnitude of the angular velocity vector against the 
stride velocity is presented. The equation of the 
quadratic fitting curve for the mean line was 
determined: ݏ݉ݎ = ଶݒ0.36− + ݒ3.3 + 0.27 (1)

Obviously the quadratic curve fits the mean 
excellent and the seven other curves are very close 
to them. Equation (1) models the relationship 
between the walking speed, which is equivalent to 
the mean stride velocity, and the one-stride-rms of 
angular velocity vectors magnitude. To model the 
relationship between both values by a quadratic 
function seems to be satisfying, but the coefficients 
must be validated including more experimental data. 

The Bland-Altman-Plot (Bland, Altman, 1986), 
shown in figure 6, points the quality of the 
approximation model (1). The “measured”, i.e. 
calculated by the method described ahead, and the 
estimated using equation (1) one-stride-rms of the 
magnitude of the angular velocity vector are 
compared. The 1σ-environment of the differences 
between the values is given with ±0.12 rad/s. It 
seems to be that the error of the model rises with the 
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value of the rms. The relative error is less than ±5% 
(worst case). 

 
Figure 5: One-stride-rms of angular velocity over stride 
velocity for seven subjects. The mean is shown bold red, 
the quadratic fitting curve dashed black. Additional, the 
equation of the fitting curve is given. 

 
Figure 6: Differences between “measured” and estimated 
RMS of angular velocity magnitude over their mean. The 
mean of differences is shown as red line, the 1σ-
environment as a green and the level of agreement as a 
blue line. 

To determine the walking speed from the 
calculated one-stride-rms of the magnitude of the 
angular velocity vector – an inverse model is used: ݒ = ଶݏ݉ݎ0.03	 + ݏ݉ݎ0.2 + 0.049 (2)

On the base on the model (2) an efficient 
algorithm to determine gait characteristics from 
IMU data (angular velocity) applied to the 
metatarsus can be developed. After an online stride 
detection, i.e. the phase between two successive gait 
events (see e.g. Orlowski, Loose, 2014) the one-
stride-rms of the magnitude of the angular velocity 
vector is calculated. Finally the walking speed is 
estimated. The walked distance can be determined. 
If more strides are included the results should 
improve. 

4 CONCLUSIONS 

The paper dealt with the estimation of gait 

parameters based on data acquired by inertial 
measurement units (IMU) placed at the middle foot 
(metatarsus). The developed method described in 
(Loose and Orlowski, 2015) is robust against a wide 
spectrum of the gait speed. The gait parameters 
(stride duration, length, velocity, distance) are 
calculated stride by stride with excellent quality. The 
numerical results are comparable with those of 
(Sabatini et al., 2005), are extended to the movement 
out of the saggital plane and are assessed for the full 
range of walking speed (2-8 km/h). This paper is 
focused on experimental data acquired by foot 
sensors during walking on the treadmill with a 
typical speed profile. The experimental setup, the 
scenario as well as the cohort were described. The 
accurateness and robustness of the method is shown 
on a test scenario, where the relative error of the 
determined walking distance was < 3%. Then 46 
data sets of the treadmill scenario were analyzed. 
Statistical evaluation over the whole walking 
distance and over all data sets shows excellent 
results for essential stride parameters like duration, 
length, speed and foot angles as well as good results 
for height and width having more natural intra- and 
inter-subject variance. The automatically determined 
speed levels are evaluated against the adjusted 
speeds showing satisfying agreement. The results are 
illustrated in Bland-Altman-Plots. The influence of 
the walking speed on various physical and statistical 
stride parameters is discussed. Based on this 
investigation a model to estimate the walking 
velocity from measured one-stride-rms of the 
magnitude of the angular velocity vector is 
proposed. A further evaluation of model and its 
parameter using all available data sets it will be 
implemented for any IMU attached to the 
metatarsus. It is expected that the method can be 
applied to sensors placed above the ankle or at the 
trunk as well as it can be implemented on smart 
phones. 
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