
Agent-based MapReduce Processing in IoT

Ichiro Satoh
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Keywords: IoT, Mobile Agent, MapReduce Processing.

Abstract: This paper presents an agent-based framework for processing data at nodes on the Internet of Things (IoT).
The framework is based on MapReduce processing, where the MapReduce processing and its clones are
popular but inherently have been designed for high-performance server clusters. It aims at enabling data to
be processed at nodes on IoT. The key idea behind it is to deploy programs for data processing at the nodes
that contain the target data as a map step by using the duplication and migration of agents and to execute the
programs with the local data. It aggregates the results of the programs to certain nodes as a reduce step. We
describe the architecture and implementation of the framework, its basic performance, and its application are
also described here.

1 INTRODUCTION

The Internet of Things (IoT) connects devices such
as everyday consumer objects and industrial equip-
ment onto the network, enabling for gathering data
about the real world. IoTs generates large quantities
of raw data generated from sensors. Since such data
tend to be raw and contain much noise, they need to
be processed before being analyzed. Data processing
assumes to be performed in clusters of high perfor-
mance servers, including data centers. Large quanti-
ties of data generated from IoT devices will increase
as a proportion of inbound traffics and workloads in
networks from IoT to data centers. Transferring the
entirety of that data to a single location for processing
will not be technically and economically viable.

However, modern IoT devices tend to have certain
amounts of computational resources. For example, a
Raspberry Pi computer, which has been one of the
most popular embedded computers, has 32 bit proces-
sor (700 MHz), 512 MB memory, and Ethernet port.
Therefore, such IoT devices have potential capabili-
ties to execute a small amount of data processing. In
fact, we have already installed and evaluated Hadoop
on Raspberry Pi computers with Linux, but its perfor-
mance is not practical even when the size of the target
data is small, e.g., less than 10MB.

In a big-data setting, MapReduce is one of the
most typical and popular computing models among
them for processing large data sets in distributed sys-
tems. It was originally studied by Google (Dean and
Ghemawat, 2004) and inspired by themapandreduce

functions commonly used in parallel list process-
ing (LISP) or functional programming paradigms.
Hadoop, is one of the most popular implementations
of MapReduce and was developed and named by Ya-
hoo!. MapReduce and its implementations have been
essentially designed for be executed on high perfor-
mance servers.

This paper is to propose a MapReduce frame-
work available at limited computers and network in
IoT, e.g., Raspberry Pi computers, independently of
Hadoop. The key behind the framework is to im-
plement and operate Mapreduce processing at IoT
by using mobile agent technology.@Themapphase
of MapReduce processing is constructed in a mobile
agent that duplicates another agent, which can car-
ries programs for data processing and deploys their
copies at IoT nodes that has the target data. The
clones agents executes their programs at their destina-
tions and then carry their results to a specified node.
The node aggregates the results into its final result ac-
cording its program as thereducephase of MapRe-
duce processing. Our framework is available on a dis-
tributed system consisting of Raspberry Pi computers.

2 RELATED WORK

The tremendous opportunities to gain new and ex-
citing value from big data are compelling for most
organizations, but the challenge of managing and
transforming it into insights requires new approaches,

250
Satoh, I.
Agent-based MapReduce Processing in IoT.
DOI: 10.5220/0005802102500257
In Proceedings of the 8th International Conference on Agents and Artificial Intelligence (ICAART 2016) - Volume 1, pages 250-257
ISBN: 978-989-758-172-4
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

such as MapReduce processing. It originally sup-
ported map and reduceprocesses (Dean and Ghe-
mawat, 2004). The first is invoked dividing a large
scale data into smaller sub-problems and assigning
them to worker nodes. Each worker node processed
the smaller sub-problems. The second involves col-
lecting the answers to all the sub-problems and ag-
gregates them as the answer to the original problem it
was trying to solve.

There have been many attempts to improve
Hadoop, which is an implementation of MapReduce
by Yahoo! in academic or commercial projects. How-
ever, there have been few attempts to implement
MapReduce itself except for Hadoop. For exam-
ple, the Phoenix system (Talbot et al., 2011) and the
MATE system (Jiang et al., 2010) supported multi-
ple core processors with shared memory. Also, sev-
eral researchers have focused on iteratively execut-
ing MapReduce efficiently, e.g., Twister (Ekanayake
et al., 2010), Haloop (Bu et al., 2010), MRAP
(Sehrish et al., 2010). These implementations assume
data in progress to be stored at temporal files rather
than key-value stores in data nodes. They assume data
to be stored in high-performance servers for MapRe-
duce processing, instead of in the edges. These works
may be able to improve performance of iterative pro-
cessing the same data. However, our framework does
not aim at such a iterative processing. This is because
most data at sensor nodes or embedded computers are
processed only once or a few times. Suppose analyz-
ing of logs at network equipment. Only updated log
data are collected and analyzed every hour or day in-
stead of the data that were already analyzed.

A few researchers have proposed their original
MapReduce processing frameworks for embedded or
mobile computers. The Misco (Dou et al., 2010)
system was a framework for executing MapReduce
processing on mobile phones via HTTP. Elespuro et
al. developed a system for executing MapReduce us-
ing heterogeneous devices, e.g., smartphones, from
a mobile device client for iPhone (Elespuru et al.,
2009). These were aimed at executing data process-
ing at nodes, e.g., smart phones and embedded com-
puters, like ours. Our main differences from theirs
are that our framework intends to execute data pro-
cessing at computers that have the target data at ar-
bitrary stores of the computers rather than at smart
phones or embedded computers assigned as certain
work nodes. In the literature on sensor networks, the
IoT, and Machine-to-Machine (M2M), several aca-
demic or commercial projects have attempted to sup-
port data at nodes on IoT at sensor nodes and em-
bedded computers. For example, Cisco’sFlog Com-
puting(Bonomi et al., 2012) and EMC’s the IoTs in-

tend to integrate cloud computing over the Internet
and peripheral computers. However, most of them do
not support the aggregation of data generated and pro-
cessed at nodes. The author presented a MapReduce-
based framework for processing data in a previous
paper (Satoh, 2013), but the previous framework as-
sumed to be executed on clusters of high-performance
servers, rather than embedded computers.

3 REQUIREMENTS

Before explaining our system, let us discuss require-
ments.

• MapReduce processing and its clones, e.g.,
Hadoop, are one of the most popular data pro-
cessing framework. It should be available in IoT,
which generates a large amount of data from sen-
sor nodes.

• Networks in IoT tend to be wireless or low-band
wired, like industry-use networks. They have
non-neglectable communication latency and are
not robust in congestion. The transmission of such
data from nodes at the edge to server nodes seri-
ously affects performance in analyzing data and
results in congestion in networks.

• Modern computers on IoT have 32 bit processors
with small amounts memory, like Raspberry Pi
computers.

• In IoT, a lot of data are generated from sensors.
Nodes at IoT locally have their data inside their
storage, e.g., flash memory.

• Every node may be able to support management
and/or data processing tasks, but may not initially
have any codes for its tasks.

• Unlike other existing MapReduce implementa-
tions, including Hadoop, our framework should
not assume any special underlying systems.1

There is no centralized management system in
IoT. Our framework should be available without
such a system.

Our framework assumes data can be processed with-
out exchanging data between nodes. In fact, in IoT
data that each node has is generated from the node’s
sensors so that the data in different nodes can be pro-
cessed independently of one another.

1Hadoop has is been not available in Windows, because
it needs a permission mechanism peculiar to Unix and its
families.

Agent-based MapReduce Processing in IoT

251

4 MOBILE AGENT-BASED
MAPREDUCE FRAMEWORK

To solve the requirements discussed in the previous
section, our framework introduces mobile agent tech-
nology into data processing. It has the following de-
sign principles.

• Dynamically Deployable Component.Our frame-
work enables us to define data processing tasks as
dynamically deployable components. To save net-
work traffics, task should be deployable at com-
puters that have the target data. In fact, the sizes
of programs for defining tasks tend to be smaller
than the sizes of the data so that the deployment of
tasks rather than data can reduce network traffics.

• Data Processing-dependent Networking. In
MapReduce processing communication between
nodes tend to depend on application-specific data
processing. Each node, including master and data
nodes in Hadoop, must have a general-purpose
runtime systems to support a variety of data pro-
cessing. However, such a runtime system tends to
consume more memory rather than peculiar pur-
pose one. Our framework enables networking for
MapReduce processing to be defined in programs
for data processing so that our runtime systems do
not need to provide a variety of networking.

• MapReduce’s KVS for Limited Memory.In gen-
eral, MapReduce processing tends to spend a
much amount of memory in its reduce phase, be-
cause the phase combines than two data entries
via KVS. The KVS that our approach introduces
should be designed to save memory. Reducing
data entries in KVSs, which are located at dif-
ferent computers, tends to have much traffics.
Our framework transmit data between nodes in a
desynchronization for the reason of avoiding con-
gestion.

The framework introduces the deployment of soft-
ware components asMap phase in MapReduce pro-
cessing like Hadoop. However, the components are
autonomous in the sense that each component can
control its destinations and itineraries under its own
control. The framework allows developers to define
their MapReduce processing from three parts, map,
reduce, and data processing, as Java classes, which
can satisfy specified interfaces. The map and re-
duce classes have similar methods in theMapper and
Reducer classes in Hadoop. The data processing
parts are responsible for data processing at the edges.
They consist of three methods corresponding to the
following three functions: reading data locally from

nodes at the edge, data processing of the data, and
storing their results in a key-value store format.

Our framework supports MapReduce processing
with mobile agents. Figure 1 outlines the basic mech-
anism for processing, which involves five steps.

Map Phase. A Mapper component makes
copies ofWorker component and dispatches the
copies to the nodes that locally have the target
data.

Data Processing Phase.Each of theWorkercom-
ponent executes its processing at its current data
node. After executing its processing, it stores its
results at the KVS of its current node.

Reduce Phase.The KVS of each of the node re-
turns only the updated data to the computer that
the Reducercomponent is running according to
their networking. TheReducercomponent col-
lects the results from theWorkercomponents via
its KVS.

Note that the number of results is by far smaller than
the amount of target data. EachWorkeragent assumes
it is to be executed independently of the others.Map-
per andReduceragents can be running on the same
node.

Worker agent

Mapper agent

Worker agent
(clone)

Worker agent processing
at data node

Worker
agent
with

results

Worker agent
(clone)

Worker
agent
(clone)

Worker agent with results

Reducer
agent

Step 1:
Duplicating work agent

Step 2:
Deploying worker
agents at data nodes

Step 3:
Executing worker agents
at data nodes

Step 4:
Migrating worker agents
with results

Step 5:
Aggregating the results
to Reducer agent

(clnodeseseseseseseseses

Worker agent processing
at data node

Worker agent processing
at data node

Target

local data

Target

local data

Target

local data

Data
processing

Data
processing

Data
processing

Figure 1: Mobile agent-based MapReduce processing.

5 DESIGN

The original MapReduce consisted of onemaster
node and one or moreworkernodes and Hadoop con-
sisted of ajob tracker, task tracker, name, anddata
nodes, where the first and third corresponded to the
master node, and the second and fourth to the data
nodes in the original MapReduce. Our MapReduce
framework has a slightly different architecture from
Google’s MapReduce, which is quite different from

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

252

Hadoop’s. The framework itself is a collection of
three kinds of mobile agents, calledMapper, Worker,
andReducer, which should be deployed at appropri-
ate nodes, calledmapper nodes, data nodes, andre-
ducer nodesrespectively. Not onlyWorkeragents but
alsoMapperandReduceragents can dynamically be
deployed at nodes according to the locations of target
data and resources available to process them.

5.1 Enhancement of MapReduce
Processing

Mobile agent technology can extend MapReduce pro-
cessing with two mechanisms:

• Mobile agents can migrate between computers
through their own itineraries. OurWorkeragents
can determine their next destinations according
to their results from processing. For example, if
Workeragents cannot find data that they want at
their current data nodes, they can migrate to other
nodes until they achieve their goals.

• SinceMapperandReduceragents in our frame-
work are implemented as mobile agents like
Workeragents, this means that our framework al-
lows MapperandReduceragents to migrate be-
tween computers. Also, we do not need to dis-
tinguish betweenMapper, Reducer, andWorker
agents. Therefore,Worker agents can become
Mapperor Reduceragents. Therefore, our frame-
work enables each worker task to work as MapRe-
duce processing.

• Mapper and Reducer agents can define
programs for their favorite data compres-
sion/uncompression inside them. Before leaving
the source side, e.g., computers at nodes, they
compress the data and after arriving at the
destination, including clouds, they decompress it.

6 AGENT PROGRAMMING
MODEL

Our framework supports data processing on nodes,
e.g., sensor nodes and embedded computers, which
may be connected through non-wideband and unsta-
ble networks, whereas existing MapReduce imple-
mentations are aimed at data processing on high-
performance servers connected through wideband
networks. Therefore, we cannot directly inherit a pro-
gramming model from existing MapReduce process-
ing.

In comparison with other MapReduce processing,
including Hadoop, our framework explicitly divides

themapoperations into two parts in addition to a part
corresponding to thereduceoperation in MapReduce.

• Duplication and Deployment of Tasks at Data
Nodes. Developers specify a set of the addresses
of the target data nodes that their data processing
has executed or the the network domains that con-
tain the nodes. If they still want to define more
complicated MapReduce processing, our frame-
work is open to extend theMapperandReducer
agents.

• Application-specific Data Processing.They de-
fine the three functions of reading data locally
from nodes, processing the data, and storing their
results in a key-value store format. These func-
tions can be isolated so that developers can define
only one or two of the functions according to the
requirements of their data processing.

• Reducing Data Processing Results.They define
how to add up the answers of data processing
stored in a key-value store.

Although the first is constructed inMapper and
Worker agents, the second in onlyWorker agents,
and the third inWorkerandReduceragents, develop-
ers focus on these three parts independently of their
mobile agent-level implementations. EachMapper
agent provides an itinerary to itsWorkeragent, where
each itinerary is defined as a combination of the basic
itinerary patterns. Figure 2 presents three patterns for
themapphase.

Data
node 2

Duplication
of Worker

Migration of
WorkerMigration of

Worker

Map Pattern 2Map Pattern 1

Migration of
Worker

Map[Pattern 3

Data node 1

Data node 3

Data node 2

Data node 1

Data node 3

Data node 2

Data node 1

Data node 3

Data node 2

Data

Data

Data

Data

Data

Data

Data

Data

Data

Figure 2: Basic itinerary patterns for map phase.

• The first is to instruct theWorkeragent to dupli-
cate itself and then instruct the duplicatedWorker
agents to migrate to and execute their data pro-
cessing on the specified data nodes.

• The second is to instruct theWorkeragent to mi-
grate to and execute its data processing on one or
more specified data nodes.

• The third is to instruct theWorkeragent to go back
and forth between each of the data nodes and the
source node (or the reducer node) to execute its
data processing on the nodes.

Figure 3 presents three patterns for thereduce
phase.

Agent-based MapReduce Processing in IoT

253

• The first is to instruct one or moreWorkeragents
to migrate to the reducer node and then pass their
results to theReduceragent at the reducer node.

• The second is to instruct theReduceragent to mi-
grate to one or more data nodes to receive the re-
sults of theWorkeragents on the data nodes and
then go back to the reducer node.

• The third is to instruct theReduceragent to return
and forth between each of the data nodes and the
reducer node to receive the results of theWorker
agents on the data nodes.

Reducer node

Data node 1

Data node 3

Migration of
Worker

Reduce Pattern 2Reduce Pattern 1

Migration of
Reducer

Reduce Pattern 3

Reducer Reducer node Reducer node

Migration of
Reducer

Reducer node

Data node 2

Data node 1

Data node 3

Data node 2

Data node 1

Data node 3

Data node 2

Figure 3: Basic itinerary patterns for reduce phase.

Our framework enables us to easily define
application-specificMapper, Reducer, and Worker
agents as subclasses of three template classes that
correspond toMapper, Reducer, and Worker, with
several libraries for key value stores (KVSs). When
Mapper agent gives one or moreWorker agents no
information, we can directly define the agent from
the template class forMapper. It can create specified
application-specificWorker agents according to one
or more specified data and deploy them at the nodes.
WhenReduceragents support basic calculations, e.g.,
adding up, averaging, and discovering maximum or
minimum values received from one or moreWorker
agents through KVSs according to the keys, we can
directly define them as our built-in classes.

7 AGENT RUNTIME SYSTEM
FOR MAPREDUCE
PROCESSING

This section describes our mobile agent-based
MapReduce framework. It consists of two layers, i.e.,
mobile agents and runtime systems. The former con-
sists of agents corresponding to job tracker andmap
and reduceprocessing and the latter corresponds to
task and data nodes. It was implemented with Java
language and operated on the latter with the Java vir-
tual machine (JVM). The current implementation was
built on our original mobile agent platform, because
existing mobile agent platforms are not optimized for

data processing and need the developers for data pro-
cessing to have knowledge about mobile agent pro-
cessing.

Each runtime system runs on a computer and is re-
sponsible for executingMapper, Worker, andReducer
agents at the computer and migrating agents to other
computers through networks (Fig. 4). The system
itself is designed independently of any application-
specific data processing. Instead, agents running on
it support MapReduce processing. Each runtime sys-
tem is light so that it can be executed on embedded
computers, including JVMs for embedded comput-
ers. The runtime system itself is portable because it
is available with Java Standard Edition (JavaSE) ver-
sion 6 or later. It can be executed on cloud computing
environments, e.g., Infrastructure as a Service (IaaS)
and Platform as a Service (PaaS) with Java SE 6 or
later.

7.1 Agent Duplication

Our framework is used to make one or more copies
of Workeragents before agents are deployed at data
nodes. The runtime system can store the states of
each agent in heap space in addition to the codes of
an agent into a bit-stream formed in Java’s JAR file
format, which can support digital signatures for au-
thentication. The current framework basically uses
the Java object serialization package for marshaling
agents. The package does not support the capturing
of stack frames of threads. Instead, when an agent is
duplicated, the runtime system issues events to it to
invoke their specified methods, which should be exe-
cuted before the agent is duplicated, and it then sus-
pends their active threads.

7.2 Agent Migration

Each runtime system establishes at most one TCP
connection with each of its neighboring systems in a
peer-to-peer manner without any centralized manage-
ment server and it exchanges control messages and
agents through the connection. When an agent is
transferred over a network, the runtime system trans-
fers the agent in a bitstream like that in task dupli-
cation and transmits the bit-stream to the destination
data nodes through TCP connections from the source
node to the nodes. After they arrive at the nodes, they
are resumed and activated from the marshalled agents
and then their specified methods are invoked to ac-
quire resources and they continue processing. To mi-
grate tasks between nodes and the cloud, our agent
migration can be tunnelled through hypertext transfer
protocol (HTTP).

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

254

Key-value store

Deploying
Worker
components

Worker
component

Mapper
component

Runtime System

Runtime System

Key1 Value1 U1 C1

Keyn Valuen Un Cn

Runtime System

Key1 Value1 U1 C1

Keyn Valuen Un Cn

Runtime System

Key1 Value1 U1 C1

Keyn Valuen Un Cn

e Systemem

em

n Cn

e System

e Systystystystystystystystem Key1 Value1 U1 C1

Keyn Valuen Un Cn

Aggregating and merging
Updated & complete
key-value pairs

Reducer
component

flag U: updated data
flag C: completed data

Local
data

Local
data

Figure 4: Runtime systems for mobile agent-based MapReduceprocessing.

7.3 Agent Execution

Each agent can have one or more activities, which are
implemented by using the Java thread library. Fur-
thermore, the runtime system maintains the lifecycles
of agents. When the life-cycle state of an agent is
changed, the runtime system issues certain events to
the agent. The system can impose specified time con-
straints on all method invocations between agents to
avoid being blocked forever. Each agent is provided
with its own Java class load, so that its namespace is
independent of other agents in each runtime system.
The identifier of each agent is generated from infor-
mation consisting of its runtime system’s host address
and port number, so that each agent has a unique iden-
tifier in the whole distributed system. Therefore, even
when two agents are defined from different classes
whose names are the same, the runtime system dis-
allows agents from loading other agents’s classes. To
prevent agents from accessing the underlying system
and other agents, the runtime system can control all
agents under the protection of Java’s security man-
ager.

7.4 Key-value-store for Mobile Agents

MapReduce processing should be executed on each
of the data nodes independently as much as possible
to reduce the amount of data transmitted through net-
works. However, data may not be divided into in-
dependent pieces. Hadoop enables data nodes to ex-
change data with one another via Hadoop file sys-
tem (HDFS) to solve this problem, because it is a
distributed file system shared by all data nodes in a
Hadoop cluster, like the Google file system (GFS).

Unlike other existing MapReduce implementa-
tions, including Hadoop, our framework does not
have any file system, because nodes in sensor net-
works and ambient computing systems may lack en-
riched storage devices. Instead, it provides tree-
structured KVSs, where each KVS maps an arbitrary
string value and arbitrary byte array data and is main-
tained inside its agent, and provides directory servers

to KVSs in agents. The root KVS merges the KVSs of
agents into itself to supportreduceprocessing. Each
KVS in each data processing agent is implemented in
the current implementation as a hashtable whose keys,
given as pairs of arbitrary string values are byte array
data and it is carried with its agent between nodes. It
supports a built-in hash-join to merge more than two
KVSs carried byWorkeragents into a single KVS.

Whenever an agent corresponding to ajob tracker
in Hadoop starts MapReduce processing, it creates
one or more processing agents and a root KVS and
assigns the references of the KVSs of the newly cre-
ated processing agents to the root KVS. Each direc-
tory server can run in the external system from agent
runtime systems and agents, or inside an agent corre-
sponding to ajob tracker. It tracks the current loca-
tions of mobile agents so that it can enable an agent to
access KVSs maintained in other agents, which may
move to other destinations, with the identifiers of the
moving agents. To supportreduceprocessing, the
root KVS merges the KVSs of agents into itself. Each
KVS in each data processing agent is implemented
as a hashtable in the current implementation, whose
keys, given as pairs of arbitrary string values and val-
ues, are byte array data, and is carried with its agent
between nodes. However, a KVS in ajob tracker
agent is also implemented as a hashtable whose keys
are given as pairs of identifiers of the agents that its
agent creates, and the values are references to them.

7.5 Job Scheduling

MapReduce can be treated as batch processing over
distributed systems. If there is more than oneMapper
agent in our framework, they can be running indepen-
dently. Therefore, we introduced ascheduleagent be-
tween runningMapperagents, if we needed to man-
age the whole system. The agent is responsible for
controlling Mapper agents and monitoringReducer
agents. When it also detects the completeness ofRe-
duceragents, it can explicitly send astart message to
one or moreMapperagents to instruct them to start
processing.

Agent-based MapReduce Processing in IoT

255

7.6 Fault-tolerance

One of the most important advantages of MapReduce
processing is to conceal the results of difficulties from
distributed systems. Our framework provides several
mechanisms for dependability. The job manager in
Hadoop is responsible for supporting fault tolerances
against crash failures in data nodes. The manager de-
tects failures in data nodes because eachtask tracker
running on a data node sends heartbeat messages to
to the job trackerevery few minutes to inform of its
status. Since data are shared by worker nodes, the
job trackerpushes work out to availabletask tracker
nodes in the cluster, striving to keep the work as close
to the data as possible.

However, our framework assumes that data are
maintained in one data node so that it has a differ-
ent policy for fault tolerances. If a data node is
stopped or disconnected, it needs to exclude such a
node. Our framework introduces a mobile agent-
based job tracker manager, called asystem man-
ageragent, which has a Java Management Extension
(JMX) interface to monitor data nodes and it period-
ically sends messages to data nodes. When they re-
ceive a message, data nodes returns their status to the
system manageragent.

• If a data node has crashed, thesystem manager
agent informsMapper agentsto omit the crashed
node from the list of target data nodes, before the
Mapperagent dispatchesWorkeragents.

• If a data node has crashed, thesystem manager
agent informs theReduceragent to omit agents
returned from nodes from the agent’s waiting list,
after Worker agents have been deployed at the
target node. Even when the crashed node can
be restarted or it continues to work, theReducer
agent does not wait for any agents from the node.

The system manageragent can explicitly make
clones of these agents at other nodes because they are
still mobile agents that can mask failures in nodes that
runMapperandReduceragents.2 The current imple-
mentation has no fault-tolerant mechanisms for fail-
ures whileWorker agents are deployed and running
because our MapReduce processing is not heavy. We
should restart processing.

7.7 Security

The current implementation is a prototype system to
dynamically deploy the components presented in this

2The current implementation does not support consis-
tency between original agents and their clones.

paper. Nevertheless, it has several security mech-
anisms. For example, it can encrypt components
before migrating them over the network and it can
then decrypt them after they arrive at their destina-
tions. Moreover, since each component is simply a
programmable entity, it can explicitly encrypt its in-
dividual fields and migrate itself with these and its
own cryptographic procedure. The JVM could ex-
plicitly restrict components so that they could only
access specified resources to protect computers from
malicious components. Although the current imple-
mentation cannot protect components from malicious
computers, the runtime system supports authentica-
tion mechanisms to migrate components so that all
runtime systems can only send components to, and
only receive them from, trusted runtime systems.

8 PERFORMANCE EVALUATION

Although the current implementation was not con-
structed for performance, we evaluated that of sev-
eral basic operations in a distributed system consist-
ing of five networked embedded computers as data
nodes connected through Fast (100Mbit) Ethernet via
an Ethernet switch. Each embedded computer was
a Raspberry Pi, where its processor was Broadcom
BCM2835 (ARMv6-architecture core with floating
point) running at 700Mhz and it has 512MB mem-
ory, a Fast Ethernet port, and SD card storage (16GB
SDHC), with Raspbian, which was a Linux optimized
to Raspberry Pi, and OpenJDK 6. Java heap size
was limited to 384 MB. We compared the basic per-
formances of our framework and Hadoop. Among
the five computers, one executes ourMapper and
Reducercomponents or the master node in Hadoop.
Others are data nodes in our framework and Hadoop.
The Reducer component added up the numbers of
each of the words received from the fourWorker
components for word counting obtained from their
nodes via KVS. We compared between our system
and Hadoop-based system. Figure5 shows the costs of
counting words by our framework and Hadoop. The
former is faster than the latter, because the former is
optimized to be executed in IoT.

The readers may think that the application is not
real. We evaluated our approach in an abnormal de-
tection from data measured by sensors. It detected
anomalous data, which were beyond the range of
specified maximum and minimum values. This eval-
uation assumed each data node would have 0.01 %
of abnormal data in its stream data generated from its
sensor every 0.1 second and each data entry 16 bytes.
We detected abnormal values from the data volume

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

256

0 6416842 32
Size of data at each data node (MB)

C
o

s
t
o

f
d

a
ta

 p
ro

c
e

s
s
in

g
 (

s
e

c
o

n
d

)

0
1

2
0

0
6

0
0

8
0

0
4

0
0

2
0

0
1

0
0

0

Hadoop
Proposed
framework

Figure 5: Performance evaluation of propose framework
and Hadoop.

corresponding to data stream for one year at each of
eight data nodes. The whole the amount of the whole
data was about 5.04 GB and the amount of abnor-
mal data was 504 KB in each node. When we used
Hadoop, we need to copy about 40 GB data, i.e., mul-
tiply 5.04 GB by 4, from data nodes to HDFS.

9 CONCLUSION

We presented a mobile agent-based MapReduce
framework available on IoT. It was designed for an-
alyzing data generated at IoT. It could distribute pro-
grams for data processing to nodes at the edges of net-
works as amapoperation, execute the programs with
their local data, and then gather the results according
to user-definingreduceoperation at a node. As men-
tioned previously, our framework is useful for thin-
ning out unnecessary or redundant data from the large
amounts of data stored at nodes in IoT, e.g., sensor
nodes and embedded computers, connected through
low-bandwidth networks. It enables developers to fo-
cus on defining application-specific data processing
at the edges without any knowledge on the target dis-
tributed systems.

REFERENCES

Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012).
Fog computing and its role in the internet of things. In
Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing, MCC ’12, pages 13–16.
ACM.

Bu, Y., Howe, B., Balazinska, M., and Ernst, M. D. (2010).
Haloop: Efficient iterative data processing on large
clusters.Proc. VLDB Endow., 3(1-2):285–296.

Dean, J. and Ghemawat, S. (2004). Mapreduce: Simplified
data processing on large clusters. InProceedings of
the 6th Conference on Symposium on Opearting Sys-
tems Design & Implementation - Volume 6, OSDI’04,
pages 10–10. USENIX Association.

Dou, A., Kalogeraki, V., Gunopulos, D., Mielikainen, T.,
and Tuulos, V. H. (2010). Misco: A mapreduce frame-

work for mobile systems. InProceedings of the 3rd
International Conference on PErvasive Technologies
Related to Assistive Environments, PETRA ’10, pages
32:1–32:8. ACM.

Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.-
H., Qiu, J., and Fox, G. (2010). Twister: A runtime
for iterative mapreduce. InProceedings of the 19th
ACM International Symposium on High Performance
Distributed Computing, HPDC ’10, pages 810–818.
ACM.

Elespuru, P. R., Shakya, S., and Mishra, S. (2009). Mapre-
duce system over heterogeneous mobile devices. In
Proceedings of the 7th IFIP WG 10.2 International
Workshop on Software Technologies for Embedded
and Ubiquitous Systems, SEUS ’09, pages 168–179,
Berlin, Heidelberg. Springer-Verlag.

Jiang, W., Ravi, V. T., and Agrawal, G. (2010). A
map-reduce system with an alternate api for multi-
core environments. InProceedings of the 2010
10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, CCGRID ’10, pages 84–
93. IEEE Computer Society.

Satoh, I. (2013). Adaptive agents for cyber-physical sys-
tems. InProceedings of the 5th International Confer-
ence on Agents and Artificial Intelligence, Volumn II,
pages 257–262.

Sehrish, S., Mackey, G., Wang, J., and Bent, J. (2010).
Mrap: A novel mapreduce-based framework to sup-
port hpc analytics applications with access patterns.
In Proceedings of the 19th ACM International Sym-
posium on High Performance Distributed Computing,
HPDC ’10, pages 107–118. ACM.

Talbot, J., Yoo, R. M., and Kozyrakis, C. (2011).
Phoenix++: Modular mapreduce for shared-memory
systems. InProceedings of the Second Interna-
tional Workshop on MapReduce and Its Applications,
MapReduce ’11, pages 9–16. ACM.

Agent-based MapReduce Processing in IoT

257

