How Important is Scale in Galaxy Image Classification?

AbdulWahab Kabani, Mahmoud R. El-Sakka

Abstract

In this paper, we study the importance of scale on Galaxy Image Classification. Galaxy Image classification involves performing Morphological Analysis to determine the shape of the galaxy. Traditionally, Morphological Analysis is carried out by trained experts. However, as the number of images of galaxies is increasing, there’s a desire to come up with a more scalable approach for classification. In this paper, we pre-process the images to have three different scales. Then, we train the same neural network for small number of epochs (number of passes over the data) on all of these three scales. After that, we report the performance of the neural network on each scale. There are two main contributions in this paper. First, we show that scale plays a major role in the performance of the neural network. Second, we show that normalizing the scale of the galaxy image produces better results. Such normalization can be extended to any image classification task with similar characteristics to the galaxy images and where there’s no background clutter.

References

  1. Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., Allam, S. S., Prieto, C. A., An, D., Anderson, K. S., Anderson, S. F., Annis, J., Bahcall, N. A., et al. (2009). The seventh data release of the sloan digital sky survey. The Astrophysical Journal Supplement Series, 182(2):543.
  2. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Bergeron, A., Bouchard, N., and Bengio, Y. (2012). Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop.
  3. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., and Bengio, Y. (2010). Theano: a CPU and GPU math expression compiler. In Proceedings of the Python for Scientific Computing Conference (SciPy). Oral Presentation.
  4. Bretzner, L. and Lindeberg, T. (1998). Feature tracking with automatic selection of spatial scales. Computer Vision and Image Understanding, 71(3):385-392.
  5. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and FeiFei, L. (2009). ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09.
  6. Dieleman, S., Willett, K. W., and Dambre, J. (2015). Rotation-invariant convolutional neural networks for galaxy morphology prediction. Monthly Notices of the Royal Astronomical Society, 450(2):1441-1459.
  7. Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193-202.
  8. Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In International conference on artificial intelligence and statistics, pages 249-256.
  9. Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013). Maxout networks. arXiv preprint arXiv:1302.4389.
  10. He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. arXiv preprint arXiv:1502.01852.
  11. Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097-1105.
  12. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541-551.
  13. LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324.
  14. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110.
  15. Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 807-814.
  16. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), pages 1-42.
  17. Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
  18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):1929-1958.
  19. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2014). Going deeper with convolutions. arXiv preprint arXiv:1409.4842.
  20. van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., Yu, T., and the scikit-image contributors (2014). scikit-image: image processing in Python. PeerJ, 2:e453.
  21. Willett, K. W., Lintott, C. J., Bamford, S. P., Masters, K. L., Simmons, B. D., Casteels, K. R., Edmondson, E. M., Fortson, L. F., Kaviraj, S., Keel, W. C., et al. (2013). Galaxy zoo 2: detailed morphological classifications for 304 122 galaxies from the sloan digital sky survey. Monthly Notices of the Royal Astronomical Society, page stt1458.
  22. Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision-ECCV 2014, pages 818-833. Springer.
Download


Paper Citation


in Harvard Style

Kabani A. and El-Sakka M. (2016). How Important is Scale in Galaxy Image Classification? . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 263-270. DOI: 10.5220/0005787402630270


in Bibtex Style

@conference{visapp16,
author={AbdulWahab Kabani and Mahmoud R. El-Sakka},
title={How Important is Scale in Galaxy Image Classification?},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016)},
year={2016},
pages={263-270},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005787402630270},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016)
TI - How Important is Scale in Galaxy Image Classification?
SN - 978-989-758-175-5
AU - Kabani A.
AU - El-Sakka M.
PY - 2016
SP - 263
EP - 270
DO - 10.5220/0005787402630270